JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Vietnam	
Name of the methodology proponents	Yuko-KEISO Co., Ltd	
submitting this form	Mitsubishi UFJ Morgan Stanley Securities Co.,	
	Ltd.	
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Installation of compressor control system(s) for	
version number	split type air conditioner(s), Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	30/01/2019	

History of the proposed methodology

Version	Date	Contents revised
01.0	30/01/2019	First Edition

A. Title of the methodology

Installation of compressor control system(s) for split type air conditioner(s), Version 01.0

B. Terms and definitions

Terms	Definitions
Compressor control system(s)	A system that improves operation efficiency of split type air
	conditioners by preventing excessive cooling through the
	utilization of pre-programmed switching on/off schedules of
	compressors. The pre-programmed switching on/off
	schedules of compressors constantly monitors operation
	status of the compressor equipped in the air conditioner
	outdoor unit by measuring an electric current at the
	optimum programmed timing.
Split type air conditioner(s)	A type of air conditioner(s) allows one outdoor unit to be
	connected with a wide variety of indoor units, including
	wall mounted, consoles, cassette, and ducted units.
Energy saving factor	Energy saving rate realized through pre-programmed
	switching on/off schedules by installing compressor control
	system for split type air conditioner(s)

C. Summary of the methodology

Items	Summary
GHG emission reduction	Energy saving achieved by compressor control system(s) for
measures	split type air conditioner(s).
Calculation of reference	Reference emissions are calculated based on the monitored
emissions	electricity consumption of compressor of outdoor unit in project
	split type air conditioner(s) with compressor control system(s),
	the project energy saving factor, and the CO ₂ emission factor of
	the electricity consumed by project split type air conditioner(s).
Calculation of project	Project emissions are calculated based on the monitored
emissions	electricity consumption of compressor of outdoor unit in project

	split type air conditioner(s) with compressor control system(s)
	and the CO ₂ emission factor of the electricity consumed by
	project split type air conditioner(s).
Monitoring parameters	Electricity consumption of compressor of outdoor unit in project
	split type air conditioner(s) with installation of compressor
	control system(s)

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs compressor control system(s) for new and/or existing non-
	inverter split type air conditioners utilizing electric heat pump.
Criterion 2	The compressor control system(s) has a function to measure electric current of
	compressor(s) at the sampling rate of 0.01 seconds or below and to estimate
	the amount of electricity consumption of compressor(s) in non-inverter split
	type air conditioner system(s).

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by compressor of outdoor unit in new and/or	CO_2	
existing non-inverter split type air conditioner(s) without compressor		
control system		
Project emissions		
Emission sources	GHG types	
Electricity consumption of compressor of outdoor unit in project split	CO_2	
type air conditioner(s) with compressor control system(s)		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are established based on the monitored electricity consumption of compressor of outdoor unit in project split type air conditioners, the project energy saving

factor, and the CO₂ emission factor of the electricity consumed by project split type air conditioners.

The project energy saving factor by installation of the compressor control system(s) is determined by the following procedures to ensure net emission reductions.

Step 1: Once after the installation of the compressor control system(s) in the project activity, switch the compressor control system(s) on(activate) and off(inactivate) consecutively at the 30-minute interval at pre-programmed switching on/off schedules before starting monitoring period. Secondly take continuous measurements on electricity consumption of compressors in the air conditioners for both on and off cases at an interval of at least 0.01 second by internal functions of compressor control system(s) for at least one operating day.

Step 2: Collect measured electricity consumption data by all installed compressor control system(s) during period examined. All the data is aggregated to total electricity consumption for both *on* and *off* cases, respectively per installed compressor control system(s).

Note:

In case the number of the installed compressor control system(s) exceeds 10 units, random sampling may be conducted. The sample size can be determined in line with the latest version of "Guideline Sampling and surveys for CDM project activities and programmes of activities" and "Standard Sampling and surveys for CDM project activities and programmes of activities" applicable at the time of conducting the sampling. Simple random sampling can be utilized if areas where the compressor control systems are installed belong to the same region described in explanatory note 1, and if the same pre-programmed on/off switching schedules are applied to all compressor control systems installed.

Step 3: Compare electricity consumption data of all collected or sampled compressor control systems(s) for *on* and *off* cases and calculate the percentage of electricity consumption saved expressed as calculated energy saving factor of each data or sample. Calculate the energy saving factor as follows.

$$\eta_{j,pe} = \left(EC_{PJ,sys,off,j,pe} - EC_{PJ,sys,on,j,pe} \right) \div EC_{PJ,sys,off,j,pe}$$

j
 i. An index variable that is used to count the number of all or sampled compressor control system(s) which is installed to split type air conditioner(s) for determination of calculated energy saving factor.

$oldsymbol{\eta}_{j,pe}$:	Calculated energy saving factor determined by the compressor control system j which is installed to the split type air conditioner during the period examined pe [-]
EC _{PJ,sys,on,j,pe}	•	Electricity consumption of compressor measured by the compressor control system <i>j</i> which is installed to the project split type air conditioner with activating compressor energy saving control during the period examined <i>pe</i> [MWh/pe]
EC _{PJ,sys,off,j,pe}	•	Electricity consumption of compressor measured by the compressor control system <i>j</i> which is installed to the project split type air conditioner with inactivating compressor energy saving control system during the period examined <i>pe</i> [MWh/pe]

Step 4: Determine the project energy saving factor with (1) averaged energy saving factor (defined as η_{ave}) which is derived by averaging the calculated energy saving factor(s) and (2) standard deviation (defined as σ) by every energy saving factor of split type air conditioner j. Project energy saving factor η is set as follows by subtracting standard deviation (σ) from averaged energy saving factor (η_{ave}) to ensure net emission reductions.

$$\eta = \eta_{ave} - \sigma$$

Where,

$$\eta_{ave} = \frac{1}{j} \sum_{j} \int_{j,pe} f_{j,pe}$$

In case of using all data,

$$\sigma = \sqrt{\frac{1}{j} \sum_{j} (_{j,pe} - \eta_{ave})^2}$$

In case of using sampled data,

$$\sigma = \sqrt{\frac{1}{j-1} \sum_{j} (_{j,pe} - \eta_{ave})^2}$$

η_{ave}	:	Averaged energy saving factor of compressor in split type air		
		conditioner(s) [-]		
σ	:	Standard deviation of energy saving factor of compressor in split type air		
		conditioner(s) [-]		
η	:	Project energy saving factor [-]		

F.2. Calculation of reference emissions

$RE_p = \sum_{i=1} EC_{PJ,i,p} \div (1-\) \times EF_{elec}$ Where		
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	•	Electricity consumption of compressor of outdoor unit in project split type air conditioner(s) i which is installed compressor control system(s) during the period p [MWh/p]
i	:	An index variable that is used to count the number of all project split type air conditioner(s) which is installed compressor control system(s)
η	:	Project energy saving factor [-]
EF_{elec}	:	CO ₂ emission factor of consumed electricity [tCO ₂ /MWh]

G. Calculation of project emissions

$$PE_p = \sum_{i=1} EC_{PJ,i,p} \times EF_{elec}$$

Where

PE_p	:	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$:	Electricity consumption of compressor of outdoor unit in project split
		type air conditioner(s) i which is installed compressor control system(s)
		during the period p [MWh/p]
EF_{elec}	:	CO ₂ emission factor of consumed electricity [tCO ₂ /MWh]

H. Calculation of emissions reductions

$ER_{p} = RE_{p} - PE_{p}$		$ER_{p} = RE_{p} - PE_{p}$
Where		
ER_p	:	Emission reductions during the period p [tCO ₂ /p]
RE_p	:	Reference emissions during the period p [tCO ₂ /p]

1	PE_p	:	Project emissions during the period <i>p</i> [tCO ₂ /p]
---	--------	---	--

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF_{elec}	CO ₂ emission factor of consumed electricity.	[Grid electricity]
		Ministry of Natural
	When project compressor of outdoor unit	Resources and Environment
	consume only grid electricity or captive	of Vietnam (MONRE),
	electricity, the project participant applies the	Vietnamese DNA for CDM
	CO ₂ emission factor respectively.	unless otherwise instructed
		by the Joint Committee.
	When project compressor of outdoor unit may	
	consume both grid electricity and captive	[Captive electricity]
	electricity, the project participant applies the	For the option a)
	CO ₂ emission factor with lower value.	Specification of the captive
		power generation system
	[CO ₂ emission factor]	provided by the
	For grid electricity: The most recent value	manufacturer ($\eta_{elec,CG}$ [%]).
	available from the source stated in this table at	CO ₂ emission factor of the
	the time of validation	fossil fuel type used in the
		captive power generation
	For captive electricity, it is determined based	system (EF _{fuel,CG} [tCO ₂ /GJ])
	on the following options:	
		For the option b)
	a) Calculated from its power generation	Generated and supplied
	efficiency (η _{elec,CG} [%]) obtained from	electricity by the captive
	manufacturer's specification	power generation system
	The power generation efficiency based on	$(EG_{PJ,CG,p} [MWh/p]).$
	lower heating value (LHV) of the captive	Fuel amount consumed by
	power generation system from the	the captive power generation
	manufacturer's specification is applied;	system (FC _{PJ,CG,p} [mass or
	$\mathrm{EF}_{\mathrm{elec}} = 3.6 \times \frac{100}{\eta_{\mathrm{elec,CG}}} \times \mathrm{EF}_{\mathrm{fuel,CG}}$	volume/p]).
	lelec,CG	Net calorific value
		(NCV _{fuel,CG} [GJ/mass or
	b) Calculated from measured data	volume]) and CO ₂ emission

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation (FC_{PJ,CG,p}) and the amount of electricity generated (EG_{PJ,CG,p}) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$$
$$\times \frac{1}{EG_{PLCG,p}}$$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	0.8*1	0.46 *2

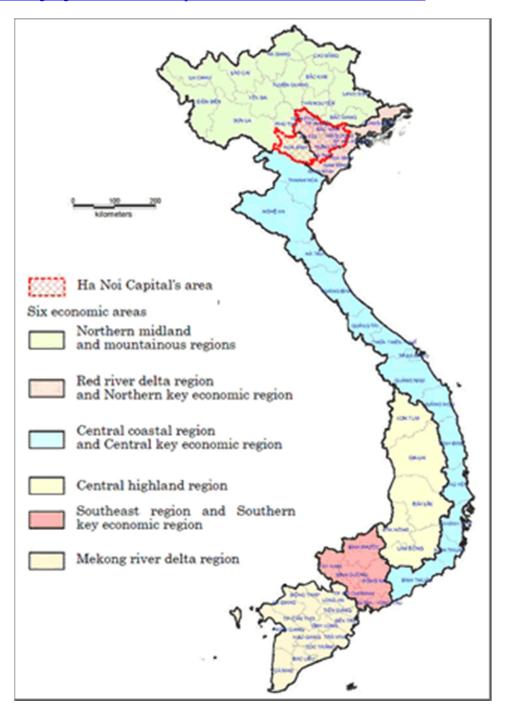
^{*1} The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in

factor (EF_{fuel,CG} [tCO₂/GJ]) of the fuel consumed by the captive power generation system in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- regional or national default values;
- 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel]
CDM approved small scale methodology: AMS-I.A.


[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.

CDM Methodological tool
"Determining the baseline
efficiency of thermal or
electric energy generation
systems version02.0" for the
default efficiency for offgrid power plants

	the option a) above. The lower value of default effective CO ₂ emission factor for natural gas (0.0543 tCO ₂ /GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.	
η	Project energy saving factor [-]	Determined as per the procedure described in Section F.1

(Explanatory note 1)

The region of Viet Nam is divided into 6 administrative units, *Red river delta*, *Northern midland mountain area*, *North central and central coastal area*, *Central highlands*, *South east*, and *Mekong river delta*, according to General statistics office of Viet Nam. http://www.gso.gov.vn/default_en.aspx?tabid=515&idmid=5&ItemID=18533

Source: Map of Viet Nam, Ministry of Land, Infrastructure, Transport and Tourism, JAPAN http://www.mlit.go.jp/kokudokeikaku/international/spw/general/vietnam/index_e.html