JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Viet Nam	
Name of the methodology proponents	HOYA Corporation	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introduction of High	
version number	Efficiency Inverter Type Centrifugal Chiller,	
	Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	⊠Additional information	
Date of completion	07/08/2018	

History of the proposed methodology

Version	Date	Contents revised
1.0	07/08/2018	First edition

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Inverter Type Centrifugal Chiller, Version 01.0

B. Terms and definitions

Terms	Definitions			
Inverter type centrifugal chiller	An inverter type centrifugal chiller is a chiller which			
	contains inverter, an apparatus to control the speed of the			
	compressor motor in order to maintain the ambient			
	temperature, and includes a centrifugal compressor.			
Cooling capacity	The capability of individual chiller to remove heat. In this			
	methodology, "cooling capacity" is used to represent a			
	cooling capacity per one chiller unit and not for a system			
	with multiple chiller units.			
Periodical check	A periodical investigation of chiller done by manufacturer			
	or agent who is authorized by the manufacturer, in order to			
	maintain chiller performance.			

C. Summary of the methodology

Items	Summary	
GHG emission reduction	High efficiency centrifugal chiller with inverter technology is	
measures	introduced to save energy, which leads to GHG emission	
	reductions.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	chiller, calculated with power consumption of project chiller,	
	ratio of COPs (Coefficient Of Performance) of reference/project	
	chillers and CO ₂ emission factor for electricity consumed.	
Calculation of project	Project emissions are GHG emissions from using project chiller,	
emissions	calculated with power consumption of project chiller and CO ₂	
	emission factor for electricity consumed.	
Monitoring parameters	Power consumption of project chiller	

•	The	amount	of	fuel	consumption	and	the	amount	of
	elect	ricity gen	era	ed by	captive power	, whe	ere ap	plicable	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

	ology is applicable to p	rojects that sat	isty all of the	following crit	eria.	
Criterion 1	Project chiller is an inverter type centrifugal chiller with a capacity which is					
	less than or equals to	less than or equals to 1,500 USRt.				
	*1 USRt = 12,000 BTU/hr = 3.52 kW					
Criterion 2	COP for project cl	niller i calcul	ated under tl	ne standardizi	ing temperature	
	conditions* (COP _{PJ,t}	c,i) is more that	n the threshol	d COP values	set in the tables	
	below. ("x" in the tal	ole represents	cooling capac	ity per unit.)		
	Cooling capacity per unit (USRt)	300≤x<450	450≤x<550	550≤x<825	825≤x≤1,500	
	Threshold COP value	5.59	5.69	5.85	6.06	
	standardizing conditions. COP _{PJ,i} is derived from specifications prepared for the quotation or factory acceptance test data by manufacturer. [equation to calculate COP _{PJ,tc,i}]					
	$\begin{aligned} \text{COP}_{\text{PJ,tc,i}} &= \text{COP}_{\text{PJ,i}} \times \left[\left(T_{\text{cooling-out,i}} - T_{\text{chilled-out,i}} + TD_{\text{chilled}} \right. \right. \\ &+ \left. TD_{\text{cooling}} \right) \div \left(37 - 7 + TD_{\text{chilled}} + TD_{\text{cooling}} \right) \right] \end{aligned}$					
	COP _{PJ,tc,i} : 0	: COP of project chiller <i>i</i> calculated under the standardizing				
		temperature co	onditions* [-]			
	COP _{PJ,i} :	•				
	co	conditions [-] $\Gamma_{\text{cooling-out,i}} : \text{Output cooling water temperature of project chiller } i \text{ set}$ $\text{under the project specific conditions [degree Celsius]}$				
	$T_{cooling-out,i}$:					
	T _{chilled-out,i} :	: Output chilled water temperature of project chiller i set				
		under the project specific conditions [degree Celsius]				
	TD _{cooling} :	Temperature d	ifference betw	veen condensi	ng temperature	
		of refrigerant a	and output cod	oling water ter	nperature,	
		1.5 degree Cel	sius set as a d	efault value [d	legree Celsius]	

	TD _{chilled} : Temperature difference between evaporating temperature					
	of refrigerant and output chilled water temperature,					
	1.5 degree Celsius set as a default value [degree Celsius]					
	*The standardizing temperature conditions to calculate COP _{PJ,tc,i}					
	Chilled water: output 7 degrees Celsius					
	input 12 degrees Celsius Cooling water: output 37 degrees Celsius					
	Cooling water: output 37 degrees Celsius input 32 degrees Celsius					
Criterion 3	Periodical check is planned more than one (1) time annually.					
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is					
	zero.					
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is					
	prepared. In the case of replacing the existing chiller with the project chiller, a					
	plan for prevention of releasing refrigerant used in the existing chiller to the					
	air (e.g. re-use of the equipment) is prepared. Execution of this plan is					
	checked at the time of verification, in order to confirm that refrigerant used					
	for the existing one replaced by the project is prevented from being released					
	to the air.					

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Power consumption by reference chiller CO ₂			
Project emissions			
Emission sources GHG type			
Power consumption by project chiller	CO_2		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and $\rm CO_2$ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference COP value varies by its cooling capacity.
- 2. The maximum values of COP in each cooling capacity range set for this methodology are defined as $COP_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$RE_p = \sum_{i} \{EC_{PJ,i,p} \times (COP_{PJ,tc,i} \div COP_{RE,i}) \times EF_{elec}\}$					
$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled} + TD_{cooling})$ $\div (37 - 7 + TD_{chilled} + TD_{cooling})]$					
Where					
RE_p	Reference emissions during the period p [tCO ₂ /p]				
$EC_{PJ,i,p}$	Power consumption of project chiller i during the period p [MWh/p]				
$COP_{PJ,tc,i}$	COP of project chiller i calculated under the standardizing temperature				
	conditions [-]				
$COP_{RE,i}$	COP of reference chiller i under the standardizing temperature conditions [-]				
EF_{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]				
$COP_{PJ,i}$	COP of project chiller <i>i</i> under the project specific conditions [-]				
$T_{cooling-out,i}$	Output cooling water temperature of project chiller i set under the project				
	specific conditions [degree Celsius]				
$T_{chilled-out,i}$	Output chilled water temperature of project chiller i set under the project				
	specific conditions [degree Celsius]				
$TD_{chilled}$	Temperature difference between condensing temperature of refrigerant and				
	output cooling water temperature, 1.5 degree Celsius set as a default value				
	[degree Celsius]				
$TD_{cooling}$	Temperature difference between evaporating temperature of refrigerant and				
	output chilled water temperature, 1.5 degree Celsius set as a default value				
	[degree Celsius]				
i	Identification number of project chiller				

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

Where

 PE_p Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$ Power consumption of project chiller i during the period p [MWh/p]

*EF*_{elec} CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$					
Where					
ER_p	Emission reductions during the period p [tCO ₂ /p]				
RE_p	Reference emissions during the period p [tCO ₂ /p]				
PE_p	Project emissions during the period p [tCO ₂ /p]				

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		Ministry of Natural
	When project chillers consume only grid	Resources and Environment
	electricity or captive electricity, the project	of Vietnam (MONRE),
	participant applies the CO ₂ emission factor	Vietnamese DNA for CDM
	respectively.	unless otherwise instructed
		by the Joint Committee.
	When project chillers may consume both grid	
	electricity and captive electricity, the project	[Captive electricity]
	participant applies the CO ₂ emission factor with	For the option a)
	lower value.	Specification of the captive
		power generation system

[CO₂ emission factor]

For grid electricity: The most recent value available from the source stated in this table at the time of validation

For captive electricity, it is determined based on the following options:

a) Calculated from its power generation
 efficiency (η_{elec,CG} [%]) obtained from
 manufacturer's specification

The power generation efficiency based on least terms of the power generation of the power generation of the power generation of the power generation of the power generation.

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec,CG}} \times EF_{fuel,CG}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,CG,p}$) and the amount of electricity generated ($EG_{PJ,CG,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$$
$$\times \frac{1}{EG_{PL,CG,p}}$$

Where:

 $NCV_{fuel,CG}$: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system

provided by the manufacturer $(\eta_{elec,CG}$ [%]).

CO₂ emission factor of the fossil fuel type used in the captive power generation system (EF_{fuel,CG} [tCO₂/GJ])

For the option b)

Generated and supplied electricity by the captive power generation system (EG_{PJ,CG,p} [MWh/p]).

Fuel amount consumed by the captive power generation system ($FC_{PJ,CG,p}$ [mass or volume/p]).

Net calorific value $(NCV_{fuel,CG})$ [GJ/mass volume]) and CO2 emission factor (EF_{fuel,CG} [tCO₂/GJ]) of the fuel consumed by the captive power generation system in order of preference:

- 1) values provided by the fuel supplier;
- measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	0.8 *1	0.46 *2

*1 The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO_2 emission factor for natural gas $(0.0543 \text{ tCO}_2/\text{GJ})$, and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.

[Captive electricity with diesel fuel]
CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.

CDM Methodological tool
"Determining the baseline
efficiency of thermal or
electric energy generation
systems version02.0" for the
default efficiency for off-grid
power plants.

 $COP_{RE,i}$

COP of reference chiller i under the standardizing temperature conditions

The COP of the reference chiller i is selected from the default COP value in the following table in line with cooling capacity of the project chiller i. ("x" in the table represents cooling capacity per unit.)

Cooling capacity per unit (USRt)	300≤x< 450	450≤x< 550	550≤x< 825	825 <x≤ 1,500</x≤
$\mathrm{COP}_{\mathrm{RE},i}$	5.59	5.69	5.85	6.06

Specifications of project chiller *i* prepared for the quotation or factory acceptance test data by manufacturer.

The default COP values are derived from the result of survey on COP of chillers from manufacturers that have high market share. The survey should prove the use of clear methodology. The default COP values should be

		revised if necessary from	
	*1 USRt = 12,000 BTU/hr = 3.52 kW	survey result which is	
		conducted by JC or project	
		participants.	
$COP_{PJ,i}$	The COP of project chiller i under the project	Specifications of project	
	specific conditions.	chiller i prepared for the	
		quotation or factory	
		acceptance test data by	
		manufacturer	
T _{cooling-out,i}	Output cooling water temperature of project	Specifications of project	
	chiller i set under the project specific conditions.	chiller i prepared for the	
		quotation or factory	
		acceptance test data by	
		manufacturer	
T _{chilled-out,i}	Output chilled water temperature of project	Specifications of project	
	chiller i set under the project specific conditions.	chiller i prepared for the	
		quotation or factory	
		acceptance test data by	
		manufacturer	