JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Viet Nam
Name of the methodology proponents	NTT DATA INSTITUTE OF MANAGEMENT
submitting this form	CONSULTING, INC.
Sectoral scope(s) to which the Proposed	3. Energy demand
Methodology applies	
Title of the proposed methodology, and	Introduction of tunnel and/or shuttle kiln with
version number	waste heat recovery system, Version01.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
Date of completion	07/08/2018

History of the proposed methodology

Version	Date	Contents revised
01.0	07/08/2018	First Edition

A. Title of the methodology

Introduction of tunnel and/or shuttle kiln with waste heat recovery system, Version 01.0

B. Terms and definitions	B. Terms and definitions		
Terms	Definitions		
Tunnel kiln	Long-shaped, continuous type firing kiln for ceramics,		
	refractory materials, which is equipped with firing and cooling		
	unit. First, product is installed on the top of a kiln car. Second,		
	the kiln car enters the kiln, moves to the firing unit of the kiln		
	and the product is fired. Then the kiln car moves to the		
	cooling unit of the kiln and the product is cooled with ambient		
	air. Lastly the kiln car moves out from the kiln. The movement		
	of the kiln car is continuous and homogeneous products are		
	produced in large quantity.		
Shuttle kiln	Batch type firing kiln for ceramics, refractory materials. First,		
	product is placed in the kiln. Then the kiln fires the product.		
	After the firing is completed, the product is cooled in the kiln		
	with ambient air and moves out from the kiln.		
Waste heat recovery system	Equipment and/or system to recover heat from exhaust gas or		
	hot air after cooling.		
	Heat will be recovered directly from the hot air after cooling		
	the product in tunnel kiln and from exhaust gas through heat		
	exchanger in shuttle kiln.		
	In case of the tunnel kiln, the system has a structure which		
	leads hot air after cooling product taken out from the cooling		
	unit to flow into the firing unit, in order to use that air as		
	combustion air in the firing unit.		
	In case of the shuttle kiln, the system has a structure which		
	leads exhaust gas from the kiln to heat exchanger for		
	pre-heating the combustion air.		

C. Summary of the methodology			
Items	Summary		
GHG emission reduction	This methodology involves the installation of tunnel kiln		
measures	and/or shuttle kiln with waste heat recovery system. Tunnel		
	kiln and/or shuttle kiln is typically installed without waste heat		

	recovery system. Thus the introduction of tunnel and/or shuttle
	kiln with waste heat recovery system will contribute to the
	reduction of natural gas as fuel for the kiln, and thus to the
	GHG emission reductions.
Calculation of reference	Reference emissions are calculated by net supplied heat
emissions	quantity recovered by the project waste heat recovery system
	and emission factor of natural gas.
Calculation of project	Project emissions are not considered as waste heat recovery
emissions	system does not utilize any fossil fuel.
Monitoring parameters	• Quantity of supplied air for combustion which was
	pre-heated by waste heat recovery system
	• Annual average temperature of supplied combustion air
	entering the firing unit of project tunnel and/or shuttle kiln

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project introduces tunnel and/or shuttle kiln with waste heat recovery
	system.
Criterion 2	Periodical check is planned more than one (1) time annually.

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types
Consumption of natural gas by reference tunnel kiln and/or shuttle kiln	CO ₂
Project emissions	
Emission sources	GHG types
N/A	N/A

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by net supplied heat quantity recovered by the project waste heat recovery system and emission factor of natural gas. Heat quantity recovered from waste heat will be calculated by multiplying supplied combustion air quantity which was pre-heated by waste heat recovery system, specific heat of combustion air and temperature difference between the temperature of combustion air and temperature of ambient.

The ambient temperature is determined conservatively on the basis of the data from the mean monthly maximum temperature per the unit of special city or province in Vietnam. The default value is set at the highest value among the mean monthly maximum temperature which is $35.8 \ ^{\circ}C$

F.2. Calculation of reference emissions

$$RE_p = RH_p \times EF_{NG}$$

Where

REp	:	Reference emissions during the period p [tCO ₂ /p]
RH _p	•	Net supplied heat quantity recovered by the project during the period <i>p</i> [GJ/p]
EF _{NG}	:	CO ₂ emission factor of natural gas [tCO ₂ /GJ]

$$RH_p = \sum_{i} RG_{i,p} \times SF \times TD_{PJ,i,p} \times 10^{-3}$$

Where

		Supplied combustion air quantity of project tunnel and/or shuttle kiln
RG _{i,p}	:	<i>i</i> which was pre-heated by waste heat recovery system during the
		period p [t/p]
SF	:	Specific heat of supplied combustion air [MJ/t·K]
TD _{PJ,i,p}	:	Temperature difference of project tunnel and/or shuttle kiln i and
		ambient during the project period p [K/p]

$$RG_{i,p} \, = \, DG \times RGV_{i,p} \times \, 10^{-3}$$

Where

DG	:	Density of supplied combustion air [kg/Nm ³]
PCV		Supplied combustion air quantity of project tunnel and/or shuttle kiln
RGV _{i,p}	Vi,p :	i which was pre-heated by waste heat recovery system during the

		period $p [\text{Nm}^3/\text{p}]$
$D_{PJ,i,p} = 0$	ГМ _{rg,i}	$_{a,p} - TM_{am}$
Vhere		
TM _{rg,i,p}	÷	Temperature of supplied combustion air entering the firing unit of the project tunnel and/or shuttle kiln <i>i</i> during the project period p [°C/p]
TMam	:	Temperature of ambient of project tunnel and/or shuttle kiln [°C]

G. Calculation of project emissions

$PE_p = 0$	
Where	
PE_p	Project emissions during the period p [tCO ₂ /p]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$				
ERp	:	Emission reductions during the period p [tCO ₂ /p]		
REp	:	Reference emissions during the period p [tCO ₂ /p]		
PE _p	:	Project emissions during the period p [tCO ₂ /p]		

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{NG}	CO ₂ emission factor of natural gas	IPCC default value from
	0.0543 tCO ₂ /GJ	"2006 IPCC Guidelines for
		National Greenhouse Gas
		Inventory, Volume2"
SF	Specific heat of supplied combustion air	
	1.006 MJ/t·K	
DG	Density of supplied combustion air	JIS K 2249-1:2011, 6 a)

	1.293 kg/Nm ³	
TM _{am}	Temperature of ambient of project tunnel	Default value set in the
	and/or shuttle kiln [°C]	methodology
	35.8 °C	