Joint Crediting Mechanism Approved Methodology VN_AM006 "Introduction of air conditioning system equipped with inverters"

A. Title of the methodology

Introduction of air conditioning system equipped with inverters, Version 01.1

B. Terms and definitions

Terms	Definitions
Air-conditioning system with	Air-conditioning system with inverters is a type of air
inverters	conditioning system which contains inverter, an apparatus
	to control the speed of the compressor motor in line with
	different load demand.
Coefficient of Performance	Coefficient of Performance (COP) is the cooling capacity
(COP)	per rated electricity consumption of the air conditioning
	system.
	The values of cooling capacity and rated electricity
	consumption are defined under specific temperature stated
	in ISO5151:2010.
	In this methodology, a COP value of project air
	conditioning system is set based on calculation by the
	value of its cooling capacity divided by the electricity
	consumption of the outdoor unit according to data by
	manufacturer.

C. Summary of the methodology

Items			Summary
GHG	emission	reduction	This methodology applies to the project that aims for saving
measures			energy by introducing air-conditioning system with inverter for
			cooling in Vietnam.

Calculation of reference	GHG emissions associated with electricity consumption of		
emissions	reference air conditioning system are calculated based on the		
	monitored electricity consumption of project air conditioning		
	system, the ratio of COPs of reference/project air conditioning		
	system, and the CO ₂ emission factor of the electricity consumed		
	by project air conditioning system.		
Calculation of project	GHG emissions associated with electricity consumption of		
emissions	project air conditioning system are calculated based on the		
	monitored electricity consumption of project air conditioning		
	system and the CO ₂ emission factor of the electricity consumed		
	by project air conditioning system.		
Monitoring parameters	• Electricity consumption of outdoor unit of project air		
	conditioning system		
	• Total electricity consumption of indoor units of project air		
	conditioning system		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Air-c	conditioning system with inverter is r	newly installed or installed to replace	
	existing non-inverter air conditioning system.			
Criterion 2	Cool	ing capacity of project air conditioni	ing system is more than or equal to	
	14kW.			
Criterion 3	COP of project air-conditioning system has a COP value higher than that of			
	the value indicated in the table below.			
	COP for Reference Air Conditioning System (COP _{<i>RE,i</i>})			
	Cooling Capacity [kW] Reference COP			
		$14 \le x < 28$ 2.97		
		$42 \le x < 56$	2.91	
	$56 \le x$ 2.56			
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project air			
	cond	itioning system is zero.		

Criterion 5 Plans to prevent release of refrigerants into the atmosphere at the time of air conditioning system removal are prepared for both project air conditioning system and the existing air conditioning system replaced by the project. In the case of replacing existing air conditioning system by project air conditioning system, execution of the prevention plan is checked at the time of verification, e.g. re-use of the refrigerant, in order to confirm that refrigerant used for the existing air conditioning system removed by the project is not released to the air.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by reference air conditioning systems	CO ₂	
Project emissions		
Emission sources	GHG types	
Electricity consumption by project air conditioning systems (include an	CO ₂	
indoor unit and an outdoor unit)		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with electricity consumption of project air conditioning system, ratio of COPs of project/reference air conditioning system, and CO₂ emission factor for electricity consumed.

Taking into consideration the market of air conditioning system in Viet Nam, the COP of reference air conditioning system is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- The reference COP, at a certain cooling capacity, is set at the maximum value among the COP values of the air conditioning systems of single-split type and non-inverter type, which are currently available in the Vietnamese market, in the respective cooling capacity range.

F.2. Calculation of reference emissions

$RE_{p} = \sum_{i} \{EC_{PJ,i,outdoor,p} \times (COP_{PJ,i,outdoor} \div COP_{RE,i})\} \times EF_{elec}$		
RE_p	: Reference emissions during the period $p [tCO_2/p]$	
$EC_{PJ,i,outdoor,p}$: Electricity consumption of outdoor unit of project air conditioning system i	
	during the period <i>p</i> [MWh/p]	
COP _{PJ,i,outdoor}	: COP of outdoor unit of project air conditioning system <i>i</i> [-]	
$COP_{RE,i}$: COP of reference air conditioning system <i>i</i> [-]	
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]	
i	: Identification number of air conditioning system [-]	

G. Calculation of project emissions

	$PE_{p} = \left(\sum_{i} EC_{PJ,i,outdoor,p} + EC_{PJ,indoor,p}\right) \times EF_{elec}$
PE_p	: Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,outdoor,p}$: Electricity consumption of outdoor unit of project air conditioning system i
	during the period p [MWh/p]
$EC_{PJ,indoor,p}$: Total electricity consumption of indoor units of project air conditioning
	system during the period p [MWh/p]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Identification number of air conditioning system [-]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$		
ER_p	: Emissions reductions during the period p [tCO ₂ /p]	
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
PE_p	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF_{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		Ministry of Natural
	When project air-conditioning system consumes	Resources and Environment
	only grid electricity or captive electricity, the	of Vietnam (MONRE),
	project participant applies the CO ₂ emission	Vietnamese DNA for CDM
	factor respectively.	unless otherwise instructed
		by the Joint Committee.
	When project air-conditioning system may	
	consume both grid electricity and captive	[Captive electricity]
	electricity, the project participant applies the	For the option a)
	CO ₂ emission factor with lower value.	Specification of the captive
		power generation system
	[CO ₂ emission factor]	provided by the
	For grid electricity: The most recent value	manufacturer ($\eta_{elec,CG}$ [%]).
	available from the source stated in this table at	CO ₂ emission factor of the
	the time of validation	fossil fuel type used in the
		captive power generation
	For captive electricity, it is determined based on	system (EF _{fuel,CG} [tCO ₂ /GJ])
	the following options:	
		For the option b)
	a) Calculated from its power generation	Generated and supplied
	efficiency ($\eta_{elec,CG}$ [%]) obtained from	electricity by the captive
	manufacturer's specification	power generation system
	The power generation efficiency based on lower	$(EG_{PJ,CG,p} [MWh/p]).$
	heating value (LHV) of the captive power	Fuel amount consumed by
	generation system from the manufacturer's	the captive power generation
	specification is applied;	system (FC $_{PJ,CG,p}$ [mass or
	$\mathrm{EF}_{\mathrm{elec}} = 3.6 imes \frac{100}{\eta_{\mathrm{elec},\mathrm{CG}}} imes \mathrm{EF}_{\mathrm{fuel},\mathrm{CG}}$	volume/p]).
	η _{elec,CG}	Net calorific value
		$(NCV_{fuel,CG} \ [GJ/mass \ or$
	b) Calculated from measured data	volume]) and CO ₂ emission
	The power generation efficiency calculated from	factor $(EF_{fuel,CG} [tCO_2/GJ])$

monitored data of the amount of fuel input for power generation ($FC_{PJ,CG,p}$) and the amount of electricity generated ($EG_{PJ,CG,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$\begin{split} EF_{elec} &= FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG} \\ &\times \frac{1}{EG_{PJ,CG,p}} \end{split}$$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	$0.8 *_{1}$	0.46_{*2}

*1 The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO_2 emission factor for natural gas

of the fuel consumed by the power captive generation system order of in preference: 1) values provided by the fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel] CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.

CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation systems version02.0" for the default efficiency for off-grid power plants.

	(0.0543 tCO ₂ /GJ), and the of default efficiency for		
	systems (42%) are applied.		
	COP of reference air condit	ioning system <i>i</i> , as	Nominal value available on
	indicated in Table 1. The va	lues of cooling	product catalogs,
	capacity and rated electricit	y consumption used	specification documents or
	in the calculation of COP at	e obtained from	websites, hearing survey.
	product catalogs, specification	ion documents or	
	website, hearing survey of r	najor manufacturers	The default values are
	in Vietnam.		derived from the result of
			survey on COP of air
	Table 1 : COP for Reference	ce Air Conditioning	conditioning system with
$COP_{RE,i}$	System (CC	$\mathbf{P}_{RE,i}$)	non-inverter from
	Cooling Capacity [kW]	Reference COP	manufacturers that have high
	$14 \leq x < 28$	2.97	market share.
	$28 \le x < 42$	2.94	The default values should be
	$42 \le x < 56$	2.91	revised if necessary from
	$56 \le x$	2.56	survey result which is
			conducted by JC or project
			participants every three
			years. The survey should
			prove the use of clear
			methodology.
	COP of outdoor unit of project air conditioning		Specifications of project air
	system <i>i</i> . The COP is calculated by using the		conditioning system for the
COP _{PJ,i,outdoor}	value of cooling capacity ar	•	quotation or factory
	consumption of outdoor uni	t provided by	acceptance test data by
	manufacturer.		manufacturer.

History of the document

Version	Date	Contents revised
01.1	10 October 2017	JC6
		 Revision of methods to determine CO₂ emission factor for consumed electricity in section I
01.0	20 October 2016	JC5, Annex 7
		Initial approval.