${\bf Joint~Crediting~Mechanism~Approved~Methodology~VN_AM004} \\ {\bf ``Anaerobic~digestion~of~organic~waste~for~biogas~utilization~within~wholesale~markets''}$

A. Title of the methodology

Anaerobic digestion of organic waste for biogas utilization within wholesale markets.

(Version 1.10)

B. Terms and definitions

Terms	Definitions	
Air tightness test	A test to confirm that there is no leakage from the gas tanks	
	and its connecting pipes once continuous anaerobic digesters	
	have been installed. The test is conducted based on JIS	
	B8266, ISO 16528-1 or ASME Boiler and Pressure Vessel	
	Code.	
Biogas	Gases generated from anaerobic digesters.	
Continuous anaerobic digester	A biogas recovery system through continuous methane	
	fermentation process from undiluted organic waste. The	
	system consists of conditioning tanks and methane	
	fermentation tanks, inside temperature of which are	
	controlled to keep mesophilous condition.	
Organic waste	Solid waste that contains degradable organic matter. This	
	may include, for example, food waste, plant waste and sludge	
	from wastewater treatment plants.	
Periodical check	A periodical maintenance operation done by the manufacturer	
	or an agent who is authorized by the manufacturer to	
	maintain the waste management facility performance (not	
	including partial replacement or overhaul).	
Waste management facility	A set of facilities such as management buildings, waste	
	receiving/storage areas, continuous anaerobic digesters,	
	storage tanks and residuals treatment equipment (if any)	
	located within a wholesale market to treat waste for biogas	
	generation.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction measures Calculation of reference	This methodology comprises measures to avoid the emissions of methane to the atmosphere from organic waste that have been left to decay anaerobically at a Solid Waste Disposal Site (SWDS) and to introduce renewable energy technologies that supply users with biogas that displaces fossil fuel use. 1. For avoidance of methane emissions, the reference	
emissions	emissions are calculated based on the weight of organic waste prevented from disposal at the SWDS using first-order decay (FOD) model. 2. For renewable energy technologies that displace technologies using fossil fuel, the reference emissions are calculated based on the monitored amount of biogas supplied, Net Calorific Value (NCV) of the biogas and CO ₂ emission factor of the reference fossil fuel.	
Calculation of project emissions	Project emissions are calculated on the basis of monitored electricity consumption.	
Monitoring parameters	 Amount of organic waste prevented from disposal in the SWDS excluding sludge Amount of processed biogas supplied to heat generation equipments 	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs continuous anaerobic digesters within a wholesale market	
	whose organic wastes have been disposed at a SWDS where the generated	
	landfill gas is not recovered, and utilizes generated biogas for heat generation.	
Criterion 2	The waste management facility to which the project continuous anaerobic	
	digesters are installed is equipped with a device to remove hydrogen sulphide	
	from the biogas before the generated gas is fed into the gas holders and tanks.	
Criterion 3	Air tightness test is conducted at least once before starting operation of the	
	continuous anaerobic digesters.	
Criterion 4	Plan to avoid methane emissions from the residuals from project anaerobic	

	digestion is prepared (e.g. including economic use such as sold as fertilizer or	
	other appropriate treatment).	
Criterion 5	Periodical check at least once a year is planned.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Methane emissions from decay of organic waste	CH ₄	
Fossil fuel consumption by the heat generation equipments	CO_2	
Project emissions		
Emission sources	GHG types	
Grid eElectricity consumption by the waste management facility	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions consist of two types of emission sources:

- 1) Methane emissions from decay of organic waste at SWDS
- 2) Fossil fuel consumption by the heat generation equipments
- 1) Calculation of reference emissions from decay of organic waste at SWDS

Organic waste from wholesale markets is typically landfilled at SWDSs and anaerobically digested which leads to methane emissions to the atmosphere. The reference emissions from decay of organic waste are calculated using the FOD model adopted in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

2) Calculation of reference emissions from fossil fuel consumption by the heat generation equipments

The generated biogas from anaerobic digesters replaces the fossil fuel which is used for heat generation by the heat generation equipments within the wholesale market. The reference emissions from fossil fuel consumption are calculated by multiplying the amount of biogas supplied to the heat generation equipments, the NCV of the biogas and CO₂ emission factor of the reference fossil fuel.

[Net emission reductions]

Net emission reductions are achieved in this methodology by setting the default DOC value conservatively in line with 2006 IPCC Guidelines for National Greenhouse Gas Inventories as the followings:

- Food waste, which has the lowest DOC value among organic waste types, is assumed to represent the organic waste from wholesale markets
- Default DOC value of 8%, which is the lower value of the range 8-20% for food waste, is applied

F.2. Calculation of reference emissions

 $RE_{p} = RE_{CH4,p} + RE_{FF,p}$

Where

RE_p Reference emissions during the period p [tCO₂/p]

 $RE_{CH4,p}$ Reference emissions from decay of organic waste during the period p [tCO₂/p]

RE_{FF, p} Reference emissions from fossil fuel consumption for heat generation during the period p [tCO₂/p]

Reference emissions from decay of organic waste during the period p (RE_{CH4,p}) is accounted only after 13 months have passed from the first disposal at the SWDS due to delay in generation of CH₄ from the time of disposal at the SWDS.

$$RE_{CH4,p} = \sum_{m=p_start}^{p_end} \left\{ (1-f) \times GWP_{CH4} \times (1-OX) \times \frac{16}{12} \times F \times DOC_f \times MCF \right\}$$

$$\times \sum_{x=1}^{m-13} W_x \times DOC \times e^{-\frac{k}{12}(m-13-x)} \times \left(1 - e^{-\frac{k}{12}}\right) \right\}$$

Where

 $RE_{CH4,p}$ Reference emissions from decay of organic waste during the period p [tCO₂/p]

f Fraction of methane captured at the SWDS and flared, combusted or used in another manner that prevents the emissions of methane to the atmosphere

GWP_{CH4} Global warming potential (GWP) of methane

OX Oxidation factor (reflecting the amount of methane from SWDS that is oxidized in

	the soil or other material covering the waste)
16/12	Molecular weight ratio of methane and carbon
F	Fraction of methane in the SWDS gas [volume fraction]
DOC_f	Fraction of degradable organic carbon (DOC) that decomposes under specific
	conditions occurring in the SWDS [weight fraction]
MCF	Methane correction factor
\mathbf{W}_{x}	Amount of organic waste prevented from disposal in the SWDS in month x [t]
DOC	Fraction of degradable organic carbon (by weight) [weight fraction]
k	Decay rate [1/year]
X	Months in the time period in which waste is disposed at the SWDS, extending from
	the first month in the time period $(x=1)$ to month m $(x=m)$
m	The N th month from the first disposal at the SWDS, extending from the first month
	of the period p ($m=p_start$) to the last month of the period p ($m=p_end$)
p_start	The N^{th} month from the first disposal, which is the first month of the period p . If that
	month is smaller than 14 and p_end is larger than 13, p_start is set at 14 because
	CH ₄ generation can be accounted only after 13 months have passed since the first
	disposal at the SWDS.
p_end	The N^{th} month from the first disposal, which is the last month of the period p . If
	<i>p_end</i> is smaller than 14, CH ₄ generation cannot be accounted.
$RE_{FF,p} =$	$RE_{BG,p} \times NCV_{BG} \times EF_{CO2,i}$
Where	
$RE_{FF,p}$	Reference emissions from fossil fuel usage for heat generation during the period p
	$[tCO_2/p]$
$RE_{BG, p}$	Amount of processed biogas supplied to heat generation equipments during the
	period p [t/p]
NCV_{BG}	Net calorific value of the processed biogas [GJ/t]
$\mathrm{EF}_{CO2,i}$	CO_2 emission factor of fossil fuel i [t CO_2 /GJ]
i	Type of fossil fuel i consumed by the heat generation equipments

G. Calculation of project emissions

 $PE_p = PEC_p \times EF_{elec}$

Where

PE_p Project emissions during the period *p* [tCO₂/p]

PEC_p Amount of electricity consumption by the waste management facility during the period *p* [MWh/p]

EF_{elec} CO₂ emission factor of the electricity consumed [tCO₂/MWh]

H. Calculation of emissions reductions

$$\begin{split} & \text{ER}_p = \text{RE}_p - \text{PE}_p \\ & \text{Where} \\ & \text{ER}_p \qquad \text{GHG emission reductions during the period } p \text{ [tCO}_2/\text{p]} \\ & \text{RE}_p \qquad \text{Reference emissions during the period } p \text{ [tCO}_2/\text{p]} \\ & \text{PE}_p \qquad \text{Project emissions during the period } p \text{ [tCO}_2/\text{p]} \end{split}$$

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emissions factor of the electricity	[Grid electricity]
	consumed [tCO ₂ /MWh]	Ministry of Natural Resources
		and Environment (MONRE),
	When project waste management facility	Vietnamese DNA for CDM
	consumes only grid electricity or captive	unless otherwise instructed by
	electricity, the project participant applies the	the Joint Committee.
	CO ₂ emission factor respectively.	
	When project waste management facility may	[Captive electricity]
	consume both grid electricity and captive	For the option a)
	electricity, the project participant applies the	Specification of the captive
	CO ₂ emission factor with higherlower value.	power generation system
		provided by the manufacturer
	[CO ₂ emission factor]	<u>(η_{elec,CG} [%]).</u>
	For grid electricity: The most recent value	CO ₂ emission factor of the
	available from the source stated in this table at	fossil fuel type used in the
	the time of validation	captive power generation

For captive electricity, it is determined based on the following options:

a) Calculated from its power generation
efficiency (\(\eta_{\text{elec,CG}}[\%]\)) obtained from
manufacturer's specification

The power generation efficiency based on
lower heating value (LHV) of the captive
power generation system from the
manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec,CG}} \times EF_{fuel,CG}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation (FC_{PJ,CG,p}) and the amount of electricity generated (EG_{PJ,CG,p}) during the monitoring period *p* is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$$
$$\times \frac{1}{EG_{PL,CG,p}}$$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed

system (EF_{fuel,CG} [tCO₂/GJ])

For the option b)

Generated and supplied electricity by the captive power generation system (EG_{PJ,CG,p} [MWh/p]).

Fuel amount consumed by the captive power generation system (FC_{PJ,CG,p} [mass or volume/p]).

Net calorific value (NCV_{fuel,CG} [GJ/mass or volume]) and CO₂ emission factor (EF_{fuel,CG} [tCO₂/GJ]) of the fuel consumed by the captive power generation system in order of preference:

1) values provided by the fuel supplier;

2) measurement by the project participants;

3) regional or national default values;

4) IPCC default values provided in tables 1.2 and 1.4

of Ch.1 Vol.2 of 2006 IPCC

Guidelines on National GHG

Inventories. Higher value is applied.

[Captive electricity with diesel fuel]

CDM approved small scale methodology: AMS-I.A.

Captive electricity with natural

fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	0.9 8 *1	0.6 <u>.46 *12</u>

*1 The most recent value at the time of validation is applied.

*12 The value is calculated with the equation in the option a) above. The higher-lower value of default effective CO₂ emission factor for natural gas (0.05483 tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (4235%) are applied. [CO₂ emission factor]

For grid electricity: The most recent value

For grid electricity: The most recent value available from the source stated in this table at the time of validation

For captive electricity: 0.8* [tCO₂/MWh]

*The most recent value available from CDM-

approved small scale methodology AMS I.A at the time of validation is applied.

 $EF_{CO2,i}$

 CO_2 emission factor of the fossil fuel *i* [t CO_2 /GJ]

If the project supplies the biogas to the existing heat generation equipments, CO_2 emission factor of the fossil fuel i which has been used in the existing equipments is applied. If the project supplies the biogas to new equipments, the CO_2 emission factor of natural gas is applied.

gas

2006 IPCC Guidelines on
National GHG Inventories for
the source of EF of natural gas.
CDM Methodological tool
"Determining the baseline
efficiency of thermal or electric
energy generation systems
version02.0" for the default
efficiency for off-grid power
plants.CDM approved small

scale methodology AMS-I.A

Country specific data or IPCC default value from "2006 IPCC Guidelines for National Greenhouse Gas Inventories". Lower limit value of the default CO₂ emission factor is applied.

f	Emation of mathema contumed o	t the CW/DC	Default value in the
	Fraction of methane captured at the SWDS and flared, combusted or used in another		
	· ·	methodology	
	manner that prevents the emiss:		
	to the atmosphere		
	f=0		
GWP_{CH4}	Global Warming Potential of m	ethane (100-yr	IPCC Fourth Assessment
	value)		Report (2.10.2 Direct Global
	GWP _{CH4} =25		Warming Potentials, Table
			2.14)
OX	Oxidation factor (reflecting the		2006 IPCC guidelines for
	methane from SWDS that is ox	idized in the	National Greenhouse Gas
	soil or other material covering	•	Inventories (Volume 3, Table
	Value of either 0.1 or 0 is applied	ed to OX	3.2)
	depending on the type of SWD	S.	
	Type of SWDS	OX default	
		values	
	Managed ¹ , unmanaged and	0	
	uncategorised SWDS		
	Managed covered with CH ₄	0.1	
	oxidising material ²		
	¹ Managed but not covered with aerated		
	material		
	² Examples: soil, compost		
F	Fraction of methane in the SWI	DS gas [volume	2006 IPCC guidelines for
1	fraction]	os gas (vorame	National Greenhouse Gas
	F=0.5		Inventories (Volume 5, Chapter
	1 –0.3		3, "FRACTION OF CH4 IN
			GENERATED LANDFILL
			GAS (F)")
DOC_f	Fraction of degradable organic carbon (DOC)		2006 IPCC guidelines for
	that decomposes under specific conditions		National Greenhouse Gas
	occurring in the SWDS [weight fraction]		Inventories (Volume 5, Table
	DOC _f =0.5		2.4 and 2.5)
MCF	Methane correction factor		2006 IPCC guidelines for
			National Greenhouse Gas
			Inventories (Volume 5, Table
			m remones (volume 3, 140)c

	T. C.C.Y.ID.G	* 7. 1	
	Type of SWDS	Value	
	Anaerobic managed SWDS	1.0	
	Semi-aerobic managed SWDS	0.5	
	Unmanaged SWDS-deep	0.8	
	Unmanaged-shallow SWDS or	0.4	
	stockpiles that are considered		
	SWDS		
	In Ho Chi Minh City, Type of SWI	Ss is	
	Anaerobic managed SWDS.		
DOC	Fraction of degradable organic carl	on (by	
	weight) [weight fraction]		
	DOC =0.08		
	DOC -0.00		
	Lower value of the range 8-20% for food		
	waste set in IPCC 2006 Guidelines for		
		National Greenhouse Gas Inventories is	
		applied.	
k	Decay rate [1/year]		
	k=0.4		
NCV _{BG}	Net calorific value of the biogas [C	·J/t]	
ь	$NCV_{BG} = 50.4$,	
	2.0.00	$NC V_{BG} = 50.4$	

History of the document

Version	Date	Contents revised
01.1	10 October 2017	 Revision of methods to determine CO₂ emission factor for consumed electricity in section I
01.0	4 August 2015	JC4, Annex 1 Initial approval.