Joint Crediting Mechanism Approved Methodology VN_AM004 "Anaerobic digestion of organic waste for biogas utilization within wholesale markets"

A. Title of the methodology

Anaerobic digestion of organic waste for biogas utilization within wholesale markets, Version 1.1

B. Terms and definitions

Terms	Definitions		
Air tightness test	A test to confirm that there is no leakage from the gas tanks		
	and its connecting pipes once continuous anaerobic digesters		
	have been installed. The test is conducted based on JIS		
	B8266, ISO 16528-1 or ASME Boiler and Pressure Vessel		
	Code.		
Biogas	Gases generated from anaerobic digesters.		
Continuous anaerobic digester	A biogas recovery system through continuous methane		
	fermentation process from undiluted organic waste. The		
	system consists of conditioning tanks and methane		
	fermentation tanks, inside temperature of which are		
	controlled to keep mesophilous condition.		
Organic waste	Solid waste that contains degradable organic matter. This		
	may include, for example, food waste, plant waste and sludge		
	from wastewater treatment plants.		
Periodical check	A periodical maintenance operation done by the manufacturer		
	or an agent who is authorized by the manufacturer to		
	maintain the waste management facility performance (not		
	including partial replacement or overhaul).		
Waste management facility	A set of facilities such as management buildings, waste		
	receiving/storage areas, continuous anaerobic digesters,		
	storage tanks and residuals treatment equipment (if any)		
	located within a wholesale market to treat waste for biogas		
	generation.		

C. Summary of the methodology

Items	Summary		
GHG emission reduction	This methodology comprises measures to avoid the emissions of		
measures	methane to the atmosphere from organic waste that have been		
	left to decay anaerobically at a Solid Waste Disposal Site		
	(SWDS) and to introduce renewable energy technologies that		
	supply users with biogas that displaces fossil fuel use.		
Calculation of reference	1. For avoidance of methane emissions, the reference		
emissions	emissions are calculated based on the weight of organic		
	waste prevented from disposal at the SWDS using		
	first-order decay (FOD) model.		
	2. For renewable energy technologies that displace		
	technologies using fossil fuel, the reference emissions are		
	calculated based on the monitored amount of biogas		
	supplied, Net Calorific Value (NCV) of the biogas and CO_2		
	emission factor of the reference fossil fuel.		
Calculation of project	Project emissions are calculated on the basis of monitored		
emissions	electricity consumption.		
Monitoring parameters	• Amount of organic waste prevented from disposal in the		
	SWDS excluding sludge		
	• Amount of processed biogas supplied to heat generation		
	equipments		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs continuous anaerobic digesters within a wholesale market		
	whose organic wastes have been disposed at a SWDS where the generated		
	landfill gas is not recovered, and utilizes generated biogas for heat generation.		
Criterion 2	The waste management facility to which the project continuous anaerobic		
	digesters are installed is equipped with a device to remove hydrogen sulphide		
	from the biogas before the generated gas is fed into the gas holders and tanks.		
Criterion 3	Air tightness test is conducted at least once before starting operation of the		
	continuous anaerobic digesters.		
Criterion 4	Plan to avoid methane emissions from the residuals from project anaerobic		

	digestion is prepared (e.g. including economic use such as sold as fertilizer or		
	other appropriate treatment).		
Criterion 5	Periodical check at least once a year is planned.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Methane emissions from decay of organic waste	CH_4		
Fossil fuel consumption by the heat generation equipments	CO_2		
Project emissions			
Emission sources GHG types			
Electricity consumption by the waste management facility	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions consist of two types of emission sources:

- 1) Methane emissions from decay of organic waste at SWDS
- 2) Fossil fuel consumption by the heat generation equipments

1) Calculation of reference emissions from decay of organic waste at SWDS

Organic waste from wholesale markets is typically landfilled at SWDSs and anaerobically digested which leads to methane emissions to the atmosphere. The reference emissions from decay of organic waste are calculated using the FOD model adopted in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

2) Calculation of reference emissions from fossil fuel consumption by the heat generation equipments

The generated biogas from anaerobic digesters replaces the fossil fuel which is used for heat generation by the heat generation equipments within the wholesale market. The reference emissions from fossil fuel consumption are calculated by multiplying the amount of biogas supplied to the heat generation equipments, the NCV of the biogas and CO_2 emission factor of the reference fossil fuel.

[Net emission reductions]

Net emission reductions are achieved in this methodology by setting the default DOC value conservatively in line with 2006 IPCC Guidelines for National Greenhouse Gas Inventories as the followings:

- Food waste, which has the lowest DOC value among organic waste types, is assumed to represent the organic waste from wholesale markets
- Default DOC value of 8%, which is the lower value of the range 8-20% for food waste, is applied

F.2. Calculation of reference emissions

 $RE_{p} = RE_{CH4,p} + RE_{FF,p}$

Where

 RE_p Reference emissions during the period p [tCO₂/p]

- $RE_{CH4,p}$ Reference emissions from decay of organic waste during the period p [tCO₂/p]
- $RE_{FF, p}$ Reference emissions from fossil fuel consumption for heat generation during the period *p* [tCO₂/p]

Reference emissions from decay of organic waste during the period p (RE_{CH4,p}) is accounted only after 13 months have passed from the first disposal at the SWDS due to delay in generation of CH₄ from the time of disposal at the SWDS.

$$\begin{split} \text{RE}_{\text{CH4,p}} &= \sum_{m=p_\text{start}}^{p_\text{end}} \Biggl\{ (1-f) \times \text{GWP}_{\text{CH4}} \times (1-\text{OX}) \times \frac{16}{12} \times \text{F} \times \text{DOC}_{f} \times \text{MCF} \\ & \times \sum_{x=1}^{m-13} \text{W}_{x} \times \text{DOC} \times e^{-\frac{k}{12}(m-13-x)} \times \left(1-e^{-\frac{k}{12}}\right) \Biggr\} \end{split}$$

Where

RE _{CH4,p}	Reference emissions from decay of organic waste during the period p [tCO ₂ /p]
f	Fraction of methane captured at the SWDS and flared, combusted or used in another
	manner that prevents the emissions of methane to the atmosphere
GWP _{CH4}	Global warming potential (GWP) of methane
OX	Oxidation factor (reflecting the amount of methane from SWDS that is oxidized in

	the soil or other material covering the waste)
16/12	Molecular weight ratio of methane and carbon
F	Fraction of methane in the SWDS gas [volume fraction]
DOC _f	Fraction of degradable organic carbon (DOC) that decomposes under specific
	conditions occurring in the SWDS [weight fraction]
MCF	Methane correction factor
$\mathbf{W}_{\mathbf{x}}$	Amount of organic waste prevented from disposal in the SWDS in month x [t]
DOC	Fraction of degradable organic carbon (by weight) [weight fraction]
k	Decay rate [1/year]
х	Months in the time period in which waste is disposed at the SWDS, extending from
	the first month in the time period $(x=1)$ to month m $(x=m)$
m	The N^{th} month from the first disposal at the SWDS, extending from the first month
	of the period p ($m=p_start$) to the last month of the period p ($m=p_end$)
p_start	The N^{th} month from the first disposal, which is the first month of the period p . If that
	month is smaller than 14 and p_{end} is larger than 13, p_{start} is set at 14 because
	CH4 generation can be accounted only after 13 months have passed since the first
	disposal at the SWDS.
p_end	The N^{th} month from the first disposal, which is the last month of the period p . If
	p_end is smaller than 14, CH ₄ generation cannot be accounted.
$RE_{FF,p} =$	$\operatorname{RE}_{BG,p} imes \operatorname{NCV}_{BG} imes \operatorname{EF}_{CO2,i}$
Where	
RE _{FF,p}	Reference emissions from fossil fuel usage for heat generation during the period p
	$[tCO_2/p]$
$\operatorname{RE}_{BG, p}$	Amount of processed biogas supplied to heat generation equipments during the
	period <i>p</i> [t/p]
NCV_{BG}	Net calorific value of the processed biogas [GJ/t]
$\mathrm{EF}_{CO2,i}$	CO ₂ emission factor of fossil fuel <i>i</i> [tCO ₂ /GJ]
i	Type of fossil fuel <i>i</i> consumed by the heat generation equipments

G. Calculation of project emissions

 $PE_p = PEC_p \times EF_{elec}$

Where

PE_p Project emissions during the period *p* [tCO₂/p]
PEC_p Amount of electricity consumption by the waste management facility during the period *p* [MWh/p]
EF_{elec} CO₂ emission factor of the electricity consumed [tCO₂/MWh]

H. Calculation of emissions reductions

 $\overline{\mathrm{ER}_p} = \mathrm{RE}_p - \mathrm{PE}_p$

Where

ER _p GHG emis	sion reductions	during the	period p [tCO ₂ /]	p]
--------------------------	-----------------	------------	-------------------------------	----

 RE_p Reference emissions during the period p [tCO₂/p]

 PE_p Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emissions factor of the electricity	[Grid electricity]
	consumed [tCO ₂ /MWh]	Ministry of Natural Resources
		and Environment (MONRE),
	When project waste management facility	Vietnamese DNA for CDM
	consumes only grid electricity or captive	unless otherwise instructed by
	electricity, the project participant applies the	the Joint Committee.
	CO ₂ emission factor respectively.	
	When project waste management facility may	[Captive electricity]
	consume both grid electricity and captive	For the option a)
	electricity, the project participant applies the	Specification of the captive
	CO ₂ emission factor with higher value.	power generation system
		provided by the manufacturer
	[CO ₂ emission factor]	$(\eta_{elec,CG} [\%]).$
	For grid electricity: The most recent value	CO ₂ emission factor of the
	available from the source stated in this table at	fossil fuel type used in the
	the time of validation	captive power generation

For captive electricity, it is determined based on the following options:

a) Calculated from its power generation efficiency ($\eta_{elec,CG}$ [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec,CG}} \times EF_{fuel,CG}$$

b) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation (FC_{PJ,CG,p}) and the amount of electricity generated (EG_{PJ,CG,p}) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

 $EF_{elec} = FC_{PI,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$

>

$$\frac{1}{EG_{PJ,CG,p}}$$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

	1001]
In case the captive electricity generation	CDM approved small scale
system meets all of the following conditions,	methodology: AMS-I.A.
the value in the following table may be	
applied to EF_{elec} depending on the consumed	[Captive electricity with natural

system (EF_{fuel,CG} [tCO₂/GJ])

For the option b)

Generated supplied and electricity by the captive power generation system (EG_{PJ,CG,p} [MWh/p]).

Fuel amount consumed by the captive power generation (FC_{PJ,CG,p} system [mass or volume/p]).

Net calorific value (NCV_{fuel,CG} [GJ/mass or volume]) and CO₂ emission factor (EF_{fuel,CG} $[tCO_2/GJ])$ of the fuel consumed by the captive power generation system in order of preference:

1) values provided by the fuel supplier;

2) measurement by the project participants;

3) regional or national default values;

4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Higher value is applied.

[Captive electricity with diesel fuel1 small scale MS-I.A.

	fuel type.			gas]
				2006 IPCC Guidelines on
	• The system is non-renewable generation			National GHG Inventories for
	system			the source of EF of natural gas.
	• Electricity	generation ca	apacity of the	CDM Methodological tool
	system is le	ess than or eq	ual to 15 MW	"Determining the baseline
				efficiency of thermal or electric
	6 1	Diesel		energy generation systems
	fuel type	fuel	Inatural gas	version02.0" for the default
	EF _{elec}	0.9	0.6 *1	efficiency for off-grid power
				plants.
	*1 The value is	calculated w	ith the equation in	
	the option a) ab	ove. The high	ner value of	
	default effective	e CO ₂ emissio	on factor for	
	natural gas (0.0	583 tCO ₂ /GJ)), and default	
	efficiency for of	ff-grid gas tu	rbine systems	
	(35%) are applied	ed.		
EF _{CO2,i}	CO_2 emission factor of the fossil fuel <i>i</i>			Country specific data or IPCC
	[tCO ₂ /GJ]			default value from "2006 IPCC
	If the project su	pplies the bio	gas to the	Guidelines for National
	existing heat ge	neration equi	pments, CO ₂	Greenhouse Gas Inventories".
	emission factor	of the fossil t	fuel <i>i</i> which has	Lower limit value of the default
	been used in the existing equipments is			CO ₂ emission factor is applied.
	applied. If the project supplies the biogas to			
	new equipments, the CO ₂ emission factor of			
	natural gas is applied.			
f	Fraction of mether	nane captured	Default value in the	
	and flared, com	busted or use	d in another	methodology
	manner that prevents the emissions of methane			
	to the atmosphere			
	f=0			
GWP _{CH4}	Global Warming	g Potential of	methane (100-yr	IPCC Fourth Assessment
	value)			Report (2.10.2 Direct Global
	GWP _{CH4} =25			Warming Potentials, Table
				2.14)
OX	Oxidation factor (reflecting the amount of			2006 IPCC guidelines for

	methane from SWDS that is ox	National Greenhouse Gas	
	soil or other material covering t	Inventories (Volume 3, Table	
	Value of either 0.1 or 0 is applied	3.2)	
	depending on the type of SWD		
	Type of SWDS		
		values	
	Managed ¹ , unmanaged and	0	
	uncategorised SWDS		
	Managed covered with CH ₄	0.1	
	oxidising material ²		
	¹ Managed but not covered with	n aerated	
	material		
	² Examples: soil, compost		
F	Fraction of methane in the SWI	DS gas [volume	2006 IPCC guidelines for
	fraction]		National Greenhouse Gas
	F=0.5		Inventories (Volume 5, Chapter
		3, "FRACTION OF CH4 IN	
		GENERATED LANDFILL	
		GAS (F)")	
DOC _f	Fraction of degradable organic	2006 IPCC guidelines for	
	that decomposes under specific	National Greenhouse Gas	
	occurring in the SWDS [weight	Inventories (Volume 5, Table	
	DOC _f =0.5		2.4 and 2.5)
MCF	Methane correction factor		2006 IPCC guidelines for
			National Greenhouse Gas
	Type of SWDS	Value	Inventories (Volume 5, Table
	Anaerobic managed SWDS	1.0	3.1)
	Semi-aerobic managed SWDS	S 0.5	
	Unmanaged SWDS-deep	0.8	
	Unmanaged-shallow SWDS o	or 0.4	
	stockpiles that are considered		
	SWDS		
	In Ho Chi Minh City, Type of SWDSs is		
	Anaerobic managed SWDS.		
DOC	Fraction of degradable organic	2006 IPCC Guidelines for	

	weight) [weight fraction]	National Greenhouse Gas
	DOC =0.08	Inventories (Volume 5, Tables
		2.4 and 2.5)
	Lower value of the range 8-20% for food	
	waste set in IPCC 2006 Guidelines for	
	National Greenhouse Gas Inventories is	
	applied.	
k	Decay rate [1/year]	2006 IPCC Guidelines for
	k=0.4	National Greenhouse Gas
		Inventories (Volume 5, Table
		3.3)
NCV _{BG}	Net calorific value of the biogas [GJ/t]	2006 IPCC Guidelines for
	$NCV_{BG} = 50.4$	National Greenhouse Gas
		Inventories (Volume 2, Table
		1.2)

History of the document

Version	Date	Contents revised
01.1	10 October 2017	JC6
		• Revision of methods to determine CO ₂ emission factor for consumed electricity in section I
01.0	4 August 2015	JC4, Annex 1
		Initial approval.