Joint Crediting Mechanism Approved Methodology VN_AM002 "Introduction of room air conditioners equipped with inverters"

A. Title of the methodology

Introduction of room air conditioners equipped with inverters, Version 01.1

B. Terms and definitions

Terms	Definitions	
Room air conditioner (RAC)	A single split type air conditioner.	
Inverter	A device included in RACs and other motor-operated	
	appliances, whose function is to vary the speed of the	
	compressor motor in line with different load demand, for	
	example to enable variable refrigerant flow to optimally regulate	
	the temperature.	
Public sector buildings	Buildings owned or administered by national or local	
	government.	
Energy efficiency ratio	The ratio of total cooling capacity to rated input power in	
(EER)	specified conditions.	
Cooling seasonal	Energy efficiency of RACs factoring into the seasonal	
performance factor (CSPF)	temperature variation. Ratio of the total annual amount of heat	
	that the RAC can remove from the indoor air when operated for	
	cooling active mode to the total annual amount of energy	
	consumed by the equipment during the same period.	

C. Summary of the methodology

Items Summary		
GHG emission reduction	Energy saving achieved by introduction of RACs equipped with	
measures	inverters.	
Calculation of reference	GHG emissions associated with electricity consumption of	
emissions	reference RACs are calculated based on the monitored	
electricity consumption of project RACs, the ratio of the		

	efficiency of reference and project RACs, and the CO ₂ emission	
	factor of the electricity consumed by project RACs.	
Calculation of project	GHG emissions associated with electricity consumption of	
emissions	project RACs are calculated based on the monitored electricity	
	consumption of project RACs and the CO ₂ emission factor of	
	the electricity consumed by project RACs.	
Monitoring parameters Electricity consumption of project RACs		
	Project energy efficiency (CSPF of project RACs)	
	Reference energy efficiency (CSPF of reference RACs)	

D. Eligibility criteria			
This methodo	This methodology is applicable to projects that satisfy all of the following criteria.		
Criterion 1	The methodology is applicable to the following types of projects:		
	• Installation of inverter RACs to public sector buildings.		
	• Replacement of existing non-inverter RACs by inverter RACs in all types of		
	buildings.		
Criterion 2	Rated cooling capacity of a project RAC is within the applicable range of the		
	Vietnamese national standard TCVN7831:2012.		
Criterion 3	Ozone Depletion Potential (ODP) of the refrigerant used for project RAC is zero.		
Criterion 4	Plans to prevent release of refrigerants into the atmosphere at the time of RAC		
	removal are prepared for both project RACs and the existing RACs replaced by		
	the project. In the case of replacing existing RACs by project RACs, execution		
	of the prevention plan is checked at the time of verification, in order to confirm		
	that refrigerant used for the existing RACs removed by the project is not released		
	to the air.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by reference RACs	CO ₂	
Project emissions		
Emission sources GHG types		
Electricity consumption by project RACs	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are established as the product of monitored electricity consumption of project RACs, the ratio of the energy efficiency of reference and project RACs, and the CO_2 emission factor of the electricity consumed by project RACs.

The methodology provides following stepwise procedures to set energy efficiency values of the reference and project RACs, ex-post. In the procedures, reference RACs are conservatively set to results in a net reduction of emissions.

Step 1: Determine reference RACs that lead to net emission reduction

Select a reference RAC for each model of project RAC which meets the following conditions:

- Not equipped with inverters.
- Categorized as Grade 4 of the energy efficiency grades by EER as outlined in Table 3 of Vietnamese national standard TCVN7830:2012.
- Cooling capacity of the reference RAC selected for the purpose of calculating reference emissions belongs to the same rated capacity class as the project RAC, based on the three rated capacity classes in Table 3 of TCVN7830:2012.
- Reference RAC is previously unused and is currently available in the market at the time of CSPF determination.

Step 2: Determine CSPF of reference RACs

CSPF values of selected reference RACs by step 1 are determined at a third party testing facility which is equipped with a calorimeter capable of determining CSPF in line with ISO5151, following the testing procedures and conditions outlined in the latest version of Vietnamese National Standard TCVN 7831 at the time of CSPF determination.

Step 3: Determine CSPF of project RACs

CSPF values of each model type of project RACs are determined at a third party testing facility which is equipped with a calorimeter capable of determining CSPF in line with ISO5151, following the testing procedures and conditions outlined in the latest version of Vietnamese National Standard TCVN 7831 at the time of CSPF determination.

Step 4: Select the reference and project energy efficiency (CSPF) values for the project

Among the CSPF values calculated in Step 2 and 3, select the highest value of CSPF determined according to step 2 and the lowest value of CSPF determined according to step 3 to yield the efficiency ratio (η_{PJ} / η_{REF} in equation 1). These values are used as the reference and project CSPF values during the project lifetime. This step ensures that ratio of CSPF values used for the purpose of calculating reference emissions is conservatively derived for the project.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i=1}^{n} EC_{PJ,i,p} \times \left(\frac{\eta_{PJ}}{\eta_{REF}}\right) \times EF_{elec}$$
(1)

Where

RE_p	=	Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	=	Electricity consumption by project RACs group i during the period p [MWh/p]
n	=	Number of RACs groups whose aggregate electricity consumption are measured by one electricity meter [dimensionless]
i	=	An index variable that is used to count the number of RACs groups
$\eta_{\scriptscriptstyle REF}$	=	Highest energy efficiency (CSPF) of reference RACs ¹ [dimensionless]
$\eta_{\scriptscriptstyle PJ}$	=	Lowest energy efficiency (CSPF) of project RACs ² [dimensionless]
EF _{elec}	=	CO ₂ emission factor of electricity consumed [tCO ₂ /MWh]

¹ CSPF of the reference RAC selected using steps as stipulated in Section F.1.

² CSPF of the project RAC selected using steps as stipulated in Section F.1.

G. Calculation of project emissions

$PE_p = \sum_{i=1}^{n} EC_{PJ,i,p} \times EF_{elec}$	(2)
--	-----

PE_p = Project emissions during the period p [tCO ₂ /p]		
$EC_{PJ,i,p}$	=	Electricity consumption by project RACs group i during the period p
		[MWh/p]
EF_{elec}	=	CO ₂ emission factor of electricity consumed [tCO ₂ /MWh]

H. Calculation of emissions reductions

		$ER_p = RE_p - PE_p$	(3)	
here				
ER_p	=	Emission reductions during the period	l <i>p</i> [tCO ₂ /p]	
RE_p	=	Reference emissions during the perio	d <i>p</i> [tCO ₂ /p]	
PE_n	=	Project emissions during the period p	$[tCO_2/p]$	

I. Data and parameters fixed *ex ante*

Parameter	Description of data	Source
EF_{elec}	CO ₂ emission factor of electricity consumed.	[Grid electricity]
		Ministry of Natural Resources
	When project RACs consume only grid	and Environment of Vietnam
	electricity or captive electricity, the project	(MONRE), Vietnamese DNA for
	participant applies the CO ₂ emission factor	CDM unless otherwise
	respectively.	instructed by the Joint
		Committee.
	When project RACs may consume both grid	
	electricity and captive electricity, the project	[Captive electricity]
	participant applies the CO ₂ emission factor with	For the option a)
	lower value.	Specification of the captive
		power generation system
	[CO ₂ emission factor]	provided by the manufacturer
	For grid electricity: The most recent value	$(\eta_{elec,CG} [\%]).$
	available from the source stated in this table at	CO ₂ emission factor of the fossil
	the time of validation	fuel type used in the captive
		power generation system
	For captive electricity, it is determined based on	$(EF_{fuel,CG} [tCO_2/GJ])$
	the following options:	
		For the option b)
	a) Calculated from its power generation	Generated and supplied
	efficiency ($\eta_{elec,CG}$ [%]) obtained from	electricity by the captive power
	manufacturer's specification	generation system (EG _{PJ,CG,p}
	The power generation efficiency based on	[MWh/p]).
	lower heating value (LHV) of the captive	Fuel amount consumed by the
	power generation system from the	captive power generation system
	manufacturer's specification is applied;	$(FC_{PJ,CG,p} [mass or volume/p]).$
	$\mathrm{EF}_{\mathrm{elec}} = 3.6 imes rac{100}{\eta_{\mathrm{elec},\mathrm{CG}}} imes \mathrm{EF}_{\mathrm{fuel},\mathrm{CG}}$	Net calorific value (NCV $_{\mbox{fuel},\mbox{CG}}$
	$\eta_{\text{elec},CG}$	[GJ/mass or volume]) and CO_2
		emission factor (EF _{fuel,CG}
	b) Calculated from measured data	[tCO ₂ /GJ]) of the fuel consumed
	The power generation efficiency calculated	by the captive power generation
	from monitored data of the amount of fuel input	system in order of preference:
	for power generation $(FC_{PJ,CG,p})$ and the amount	1) values provided by the fuel

of electricity generated $(EG_{PJ,CG,p})$ during the monitoring period *p* is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

 $EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$ $\times \frac{1}{EG_{PJ,CG,p}}$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	$0.8 *_{1}$	0.46 *2

*1 The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO_2 emission factor for natural gas (0.0543 tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine 2) measurement by the project participants;
 3) regional or national default values;
 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.
 [Captive electricity with diesel fuel]

supplier;

CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas]

2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas. CDM tool Methodological "Determining the baseline efficiency of thermal or electric energy generation systems version02.0" for the default efficiency for off-grid power plants.

	systems (42%) are applied.	
n	Number of RACs groups whose aggregate electricity consumption are measured by one electricity meter [dimensionless]	The project proponent selects an integer between 1 and 25 in line with the number of RACs groups
		included in the project.

History of the document

Version	Date	Contents revised
01.1	10 October 2017	JC6
		 Revision of methods to determine CO₂ emission factor for consumed electricity in section I
01.0	14 January 2015	JC3, Annex 3
		Initial approval.