JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Vietnam	
Name of the methodology proponents	Hitachi Chemical Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Installation of Container Formation Facility at	
version number	Acid Lead Battery Factory, Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	04/11/2016	

History of the proposed methodology

Version	Date	Contents revised
1.0	04/11/2016	First edition as a proposed methodology

A. Title of the methodology

Installation of Container Formation Facility at Acid Lead Battery Factory, Version 01.0

B. Terms and definitions

Terms	Definitions	
container formation	A formation method of acid lead battery in which the battery	
	is assembled with non-converted plates and then converted in	
	the container.	
container formation facility	A facility in which container formation of acid lead battery is	
	done. Two processes of tank formation (formation and	
	charging) are integrated into this facility. Drying facility in	
	tank formation is no longer needed in container formation.	
tank formation	A formation method of acid lead battery in which the plates	
	are converted in a formation tank after being manufactured	
	and then assembled into a battery.	
tank formation facilities	Facilities including "formation tank" and "washing facility"	
	at tank formation process, "drying facility" at plate drying	
	process, and "charging facility" at charging process.	

C. Summary of the methodology

Items	Summary	
GHG emission reduct	on Installation of container formation facility at acid lead battery	
measures	production line in place of tank formation facilities leads to	
	reduction of electricity and fossil fuel consumption by the	
	production line.	
Calculation of refere	<i>ce</i> Reference emissions from electricity consumption are calculated	
emissions	by multiplying electricity consumption of reference tank	
	formation facilities and CO ₂ emission factor for electricity	
	consumed.	
	Electricity consumption of reference tank formation facilities is	
	calculated with production output of acid lead battery and	

	specific electricity consumption by the reference facilities.		
	Reference emissions from fuel consumption are calculated by		
	multiplying net calorific value required for fuel consumption to		
	produce acid lead battery by reference tank formation facilities		
	and CO ₂ emission factor.		
	Net calorific value required for fuel consumption to produce		
	acid lead battery by reference tank formation facilities is		
	calculated with production output of acid lead battery and		
	specific net calorific value required for fuel consumption per		
	acid lead battery by the reference facilities.		
Calculation of project	Project emissions are calculated by multiplying electricity		
emissions	consumption of project container formation facility and CO ₂		
	emission factor for electricity consumed.		
Monitoring parameters	ers • Production output of acid lead battery at the container		
	formation facility in the project factory per acid lead		
	battery type		
	• Capacity of acid lead battery		
	• Electricity consumption by the container formation facility		
	in the project factory		

D. Eligibility criteria		
This methodology is applicable to projects that satisfy all of the following criteria.		
Criterion 1	Container formation facility is newly installed or installed to replace tank	
	formation facilities at acid lead battery production line.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by tank formation facilities	CO ₂	
Fossil fuel (LPG) consumption by tank formation facilities	CO ₂	
Electricity consumption by chiller and cooling tower	CO ₂	
Project emissions		
Emission sources	GHG types	

Electricity consumption by container formation facility	CO ₂
Electricity consumption by cooling chiller and cooling tower	CO ₂

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Electricity and fossil fuel are consumed for the process of producing acid lead batteries in tank formation facilities.

Reference emissions from electricity consumption are calculated by multiplying specific electricity consumption per unit of acid lead battery (SEC_{RE}) [kWh/unit], production output of acid lead battery [units/p], and CO₂ emission factor for electricity consumed [tCO₂/MWh].

Reference emissions from fuel consumption are calculated by multiplying specific net calorific value required for fuel consumption per unit of acid lead battery ($SNCV_{RE}$) [MJ/unit], production output of acid lead battery [units/period] and CO₂ emission factor for fuel which is determined as per a factory where a JCM project is implemented [tCO₂/GJ].

In this methodology, SEC_{RE} is calculated with the equation specified, which is formulated in a conservative manner by excluding the electricity consumption by chiller and cooling tower to achieve net emission reductions while typical configuration of the equipment for producing acid lead batteries in tank formation facilities consists of the followings: formation tank, charging facility, chiller and cooling tower and other tank formation facilities such as washing facility and/or drying facility.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{k} \left[\left(EC_{RE,k,p} \times EF_{elec,k} \right) + \left(NCV_{RE,k,p} \times EF_{fuel,k} \right) \right]$$
$$EC_{RE,k,p} = \sum_{i} \left(SEC_{RE,i,k} \times N_{i,k,p} \right) \times \frac{1}{1,000}$$
$$NCV_{RE,k,p} = \sum_{i} \left(SNCV_{RE,i,k} \times N_{i,k,p} \right) \times \frac{1}{1,000}$$
$$SEC_{RE,i,k} = 0.1338 \times AH_{i} + 0.1531$$

	$SNCV_{RE,i,k} = 0.3282 \times AH_i + 0.9377$
Where	
RE_p	Reference emissions during the period p [tCO ₂ /p]
$EC_{RE,k,p}$	Electricity consumption by tank formation facilities in the project factory k
	during the period <i>p</i> [MWh/p]
$EF_{elec,k}$	CO_2 emission factor for electricity consumed in the project factory k
	[tCO ₂ /MWh]
$NCV_{RE,k,p}$	Net calorific value required for fuel consumption to produce acid lead battery
	by tank formation facilities in the project factory k during the period p [GJ/p]
EF _{fuel,k}	CO_2 emission factor for fuel applicable to the project factory k [tCO ₂ /GJ]
$SEC_{RE,i,k}$	Specific electricity consumption per acid lead battery i by the reference
	facilities in the project factory k [kWh/unit]
$SNCV_{RE,i,k}$	Specific net calorific value required for fuel consumption per acid lead battery i
	by the reference facilities in the project factory k [MJ/unit]
$N_{i,k,p}$	Production output of acid lead battery i in the project factory k during the
	period p [units/p]
AH _i	Capacity of acid lead battery i [Ah/unit]
i	Identification number of the project acid lead battery type
k	Identification number of the project factory

G. Calculation of project emissions

$$PE_p = \sum_{k} (EC_{PJ,j,k,p} \times EF_{elec,k})$$

Where

 PE_p Project emissions during the period p [tCO₂/p]

- $EC_{PJ,k,p}$ Electricity consumption by the container formation facilities in the project factory *k* during the period *p* [MWh/p]
- $EF_{elec,k}$ CO₂ emission factor for electricity consumed in the project factory k [tCO₂/MWh]
- *k* Identification number of the project factory

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$
Where	
ER_p	Emission reductions during the period p [tCO ₂ /p]
RE_p	Reference emissions during the period p [tCO ₂ /p]
PE_p	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec,k}	CO ₂ emission factor for electricity consumed	[Grid electricity]
	in the project factory k [tCO ₂ /MWh]	Ministry of Natural Resources
		and Environment (MONRE),
	When project container formation facility	Vietnamese DNA for CDM
	consumes only grid electricity or captive	unless otherwise instructed by
	electricity, the project participant applies the	the Joint Committee.
	CO ₂ emission factor respectively.	[Captive electricity]
	When project container formation facility may	CDM approved small scale
	consume both grid electricity and captive	methodology AMS-I.A
	electricity, the project participant applies the	
	CO ₂ emission factor with lower value.	
	[CO ₂ emission factor]	
	For grid electricity: The most recent value	
	available from the source stated in this table at	
	the time of validation	
	For captive electricity: 0.8* [tCO ₂ /MWh]	
	*The most recent value available from CDM	
	approved small scale methodology AMS-I.A	
	at the time of validation is applied.	

EF _{fuel,k}	CO ₂ emission factor for fuel applicable to the	Country specific data or IPCC
	project factory $k [tCO_2/GJ]$	default value from "2006 IPCC
		Guidelines for National
	In case tank formation facilities exist in the	Greenhouse Gas Inventory".
	project factory prior to the project	Lower limit value of the default
	implementation, the lowest CO ₂ emission	net calorific value is applied.
	factor of the fuel used by the facilities may be	
	applied.	
	Otherwise, CO ₂ emission factor for Natural	
	Gas is applied.	