JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Vietnam	
Name of the methodology proponents	Stanley Electric Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Installation of LED lighting equipment to	
version number	fishing boats, Version 01.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
Date of completion	19/05/2017	

History of the proposed methodology

Version	Date	Contents revised
01.0	19/05/2017	First Edition

A. Title of the methodology

Installation of LED lighting equipment to fishing boats, Version 01.0

B. Terms and definitions

Terms	Definitions		
Illuminance	Illuminance is the physical quantity used in the		
	measurement of the incident light illumination on the		
	surface and equals to the luminous flux per unit area. In		
	SI derived units these are measured in lux (lx) or lumens		
	per square meter (lm/m²).		
Luminous flux	Luminous flux is the measure of the perceived power of		
	the total amount of light energy radiated from a light		
	source in a certain direction. The SI unit of luminous		
	flux is the lumen (lm).		
LED light	LED light is a lighting fixture using a light-emitting diode		
	(LED), a semiconductor device that emits visible light		
	when an electric voltage is applied in forward direction.		

C. Summary of the methodology

Items	Summary	
GHG emission reduction	GHG emission reduction is achieved through the reduction of	
measures	electricity consumption by newly installing LED lighting	
	equipment or replacing existing lamps with LED lighting	
	equipment.	
Calculation of reference	e GHG emissions associated with electricity consumption of	
emissions	reference lighting equipment are calculated based on the total	
	electricity consumption by LED lighting, rated electricity	
	consumption of reference lamp, rated electricity consumption of	
LED light, the ratio of the number of reference lamps to that		
project LED lights, and the emission factor of captive powe		

	generation using diesel fuels.	
Calculation of project	iect Project emissions are calculated by multiplying total electricity	
emissions consumption of project by the emission factor of captive po		
generation using diesel fuels.		
Monitoring parameters	Total electricity consumption of project LED lights.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project newly installs LED lights or replaces existing lamps with LED
	lights as fishing lights for diesel powered fishing boats whose horsepower
	is over 90 in Vietnam.
Criterion 2	Project LED lighting meets the following specification:
	- Water proof and dust proof ratings are equal to or higher than the
	international standard IP65.
Criterion 3	In case existing lamps are replaced, a plan for proper treatment (including
	re-use and recycling) and disposal of replaced existing lamps is prepared
	and implemented according to the relevant legislation in Vietnam to avoid
	the mercury release to the environment.

E. Emission Sources and GHG types

Reference emissions				
Emission sources GHG types				
Electricity consumption by reference lighting equipment CO ₂				
Project emissions				
Emission sources	GHG types			
Electricity consumption by project LED light	CO ₂			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying reference total electricity consumption by the emission factor of captive power generation using diesel fuels. Reference total electricity consumption is computed by multiplying total electricity consumption by LED lighting of

fishing boat i, by rated electricity consumption of reference lamp and the ratio of the number of reference lamps to that of project LED lights of fishing boat i, divided by rated electricity consumption of LED light of fishing boat i.

The luminous flux of reference lamp, which is used for calculating the parameter N_{REF} , is determined conservatively in the following manner to ensure the net emission reductions.

- The luminous flux of reference lamp is set at the highest specification among the fishing boat lamps which are currently available in the Vietnamese market.

F.2. Calculation of reference emissions

Reference emissions are calculated by the following equation:

$$RE_{p} = \sum_{i} EC_{REF,i,p} \times EF_{CO2,captive}$$
 (1)

$$EC_{REF,i,p} = EC_{PJ,i,p} \times REC_{REF} \times N_{REF} / REC_{PJ}$$
 (2)

Where

RE_p	=	Reference emissions during the period p [tCO ₂ /p]
$EC_{REF,i,p}$	=	Reference total electricity consumption of fishing boat i by reference lamp during the period p [MWh/p]
EF _{CO2,captive}	=	CO ₂ emission factor of the electricity consumed by the diesel-powered fishing boat [tCO ₂ /MWh]
REC_{REF}	=	Rated electricity consumption of reference lamp of fishing boat [W]
i	=	Index for fishing boat
N_{REF}	=	Number of reference lamps, which has the equivalence to the design illuminance into an irradiated sea surface by one project LED light of fishing boat
$EC_{PJ,i,p}$	=	Total electricity consumption by LED light of fishing boat <i>i</i> during period <i>p</i> [MWh/p]
REC_{PJ}	=	Rated electricity consumption of LED light of fishing boat [W]

G. Calculation of project emissions

$PE_p = \sum_i I$	EC_{P}	$J_{J,i,p} \times EF_{CO2,Captive}$ (3)
Where		
PE_p	=	Project emissions during the period p [tCO ₂ /p]
EF _{CO2,captive}	=	CO ₂ emission factor of the electricity consumed by the diesel-powered
		fishing boat [tCO ₂ /MWh]
$EC_{PJ,i,p}$	11	Total electricity consumption by LED light of fishing boat i during the
		period p [MWh/p]
i	=	Index for fishing boat

H. Calculation of emissions reductions

$ER_p = RE_p -$	PE_p	(4)	
Where			
ER_p	=	Emission reductions during the period p [tCO ₂ /p]	
RE_p	=	Reference emissions during the period p [tCO ₂ /p]	
PE_p = Project emissions during the period p [tCO ₂ /p]			

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$EF_{CO2,captive}$	CO ₂ emission factor of the electricity	"Table 2. Emission factors for
	consumed by the diesel-powered	diesel generator systems (in kg
	fishing boat	CO ₂ /kWh) for three different
		levels of load factors" of CDM
	0.8 [tCO ₂ /MWh]	approved small scale methodology
		AMS-I.F.

REC_{REF}	Rated electricity consumption of	Additional information
	reference lamp of fishing boat	
	1,000 [W]	
REC_{PJ}	Rated electricity consumption of LED	Nominal value derived from the
	light of fishing boat	manufacturer's specifications
		available on specification
		documents, the concerned product
		catalogs, specification documents
		or manufacturer's websites.
N_{REF}	Number of reference lamps, which has	Explanatory Note
	the equivalence to the design	
	illuminance into an irradiated sea	
	surface by one project LED light of	
	fishing boat	

Explanatory Note

The procedure to determine the N_{REF} value is as follows.

Step 1

Design illuminance of project fishing boat from light to sea surface is derived from the following equation.

$$E_{PJ} = F_{PJ} * M_{PJ}$$

where:

E_{PJ}	=	Design illuminance of project fishing boat [lx]
F_{PJ}	=	Luminous flux into an irradiated sea surface, of those from light
		sources of one LED light in fishing boat [lm]
M_{PJ}	=	Maintenance rate of LED, on the basis of international standard,
		national standard/guideline, or manufacture specification

Step 2

Calculate number of reference lamps, which has the equivalence to the design illuminance into an irradiated sea surface by one project LED light of fishing boat:

$$N_{REF} = \frac{E_{PJ}}{F_{REF} * M_{REF}}$$

where:

N_{REF}	=	Number of reference lamps, which has the equivalence to the
		design illuminance into an irradiated sea point by one project
		LED light of fishing boat
F_{REF}	=	Luminous flux into an irradiated sea point, of those from light
		sources of one High Intensity Discharge (HID) light in fishing
		boat [lm]
		*: The luminous flux of reference lump sets 97,091 [lm] as the
		additional information shows.
M_{REF}	=	Maintenance rate of HID lamp, on the basis of JIEG-001 of the
		Illuminating Engineering Institute of Japan
		0.5