JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Vietnam		
Name of the methodology proponents	NTT DATA INSTITUTE OF		
submitting this form	MANAGEMENT CONSULTING, INC.		
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Introduction of air conditioning system		
version number	equipped with inverters, Version 01.0		
List of documents to be attached to this form	☐The attached draft JCM-PDD:		
(please check):	⊠Additional information		
Date of completion	12/08/2016		

History of the proposed methodology

Version	Date	Contents revised	
01.0	12/08/2016	First edition	

A. Title of the methodology

Introduction of air conditioning system equipped with inverters, Version 01.0

B. Terms and definitions

Terms	Definitions
Air-conditioning system with	Air-conditioning system with inverters is a type of air
inverters	conditioning system which contains inverter, an apparatus
	to control the speed of the compressor motor in line with
	different load demand.
Coefficient of Performance	Coefficient of Performance (COP) is the cooling capacity
(COP)	per rated electricity consumption of the air conditioning
	system.
	The values of cooling capacity and rated electricity
	consumption are defined under specific temperature stated
	in ISO5151:2010.
	In this methodology, a COP value of project air
	conditioning system is set based on calculation by the
	value of its cooling capacity divided by the electricity
	consumption of the outdoor unit according to data by
	manufacturer.

C. Summary of the methodology

Items	Summary	
GHG emission reduct	on This methodology applies to the project that aims for saving	
measures	energy by introducing air-conditioning system with inverter for	
	cooling in Vietnam.	
Calculation of refere	ce GHG emissions associated with electricity consumption of	
emissions	reference air conditioning system are calculated based on the	
	monitored electricity consumption of project air conditioning	
	system, the ratio of COPs of reference/project air conditioning	

	system, and the CO ₂ emission factor of the electricity consumed		
	by project air conditioning system.		
Calculation of project	GHG emissions associated with electricity consumption of		
emissions	project air conditioning system are calculated based on the		
	monitored electricity consumption of project air conditioning		
	system and the CO ₂ emission factor of the electricity consumed		
	by project air conditioning system.		
Monitoring parameters	Electricity consumption of outdoor unit of project air		
	conditioning system		
	Total electricity consumption of indoor units of project air		
	conditioning system		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Air-conditioning system with inverter is newly installed or installed to replace			
	existing non-inverter air conditioning system.			
Criterion 2	Cooling capacity of project air conditioning system is more than or equal to			
	14kW.			
Criterion 3	COP of project air-conditioning system has a COP value higher than that of			
	the value indicated in the table below.			
	COP for Reference Air Conditioning System ($COP_{RE,i}$)			
	Cooling Capacity [kW] Reference COP			
	$14 \le x < 28$ 2.97			
	$28 \le x < 42$ 2.94			
	$42 \le x < 56$ 2.91			
	56≤x 2.56			
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project air			
	conditioning system is zero.			

Criterion 5

Plans to prevent release of refrigerants into the atmosphere at the time of air conditioning system removal are prepared for both project air conditioning system and the existing air conditioning system replaced by the project. In the case of replacing existing air conditioning system by project air conditioning system, execution of the prevention plan is checked at the time of verification, e.g. re-use of the refrigerant, in order to confirm that refrigerant used for the existing air conditioning system removed by the project is not released to the air.

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Electricity consumption by reference air conditioning systems	CO_2		
Project emissions			
Emission sources	GHG types		
Electricity consumption by project air conditioning systems (include an	CO_2		
indoor unit and an outdoor unit)			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with electricity consumption of project air conditioning system, ratio of COPs of project/reference air conditioning system, and CO₂ emission factor for electricity consumed.

The COP of reference air conditioning system of non-inverter type is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- The reference COP, at a certain cooling capacity, is set at a maximum value in the respective cooling capacity range.

F.2. Calculation of reference emissions

$$RE_p = \sum_{i} \{EC_{PJ,i,outdoor,p} \times (COP_{PJ,i,outdoor} \div COP_{RE,i})\} \times EF_{elec}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PJ,i,outdoor,p}$: Electricity consumption of outdoor unit of project air conditioning system i

during the period *p* [MWh/p]

 $COP_{PJ,i,outdoor}$: COP of outdoor unit of project air conditioning system i [-]

 $COP_{RE,i}$: COP of reference air conditioning system i [-]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

i : Identification number of air conditioning system [-]

G. Calculation of project emissions

$$PE_{p} = \left(\sum_{i} EC_{PJ,i,outdoor,p} + EC_{PJ,indoor,p}\right) \times EF_{elec}$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PLi,outdoor,p}$: Electricity consumption of outdoor unit of project air conditioning system i

during the period *p* [MWh/p]

EC_{PLindoorp}: Total electricity consumption of indoor units of project air conditioning

system during the period *p* [MWh/p]

*EF*_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

i : Identification number of air conditioning system [-]

H. Calculation of emissions reductions

 ER_p

 $ER_p = RE_p - PE_p$

: Emissions reductions during the period p [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of	of data	Source
EF _{elec}	CO ₂ emission factor for contact When captive power generat the project site, the Vietnamese national grid eravailable at the time of var [EF _{elec}] and fixed for the thereafter. When captive power generate the project site, then [EF _{elec} selected as below and fixed period thereafter: EF _{elec} = min(EF _{grid} , EF _{captive}) EF _{captive} = 0.8 tCO ₂ /MWh* *The most recent emission CDM approved small AMS-I.A at the time of validation of the captive of	ation is not available in the most recent mission factor [EF _{grid}] lidation is applied as elementary monitoring period ration is available at lec] is conservatively d for the monitoring	[EF _{grid}] Ministry of Natural Resources and Environment of Vietnam (MONRE), Vietnamese DNA for CDM unless otherwise instructed by the Joint Committee. [EF _{captive}] CDM approved small scale methodology: AMS-I.A
$COP_{RE,i}$	COP of reference air condition indicated in Table 1. The variable and rated electricity in the calculation of COP are product catalogs, specificating website, hearing survey of ration in Vietnam. Table 1: COP for Reference System (COC) Cooling Capacity [kW] $14 \le x < 28$ $28 \le x < 42$ $42 \le x < 56$ $56 \le x$	lues of cooling y consumption used re obtained from on documents or major manufacturers ace Air Conditioning	Nominal value available on product catalogs, specification documents or websites, hearing survey. The default values are derived from the result of survey on COP of air conditioning system with non-inverter from manufacturers that have high market share. The default values should be revised if necessary from survey result which is conducted by JC or project participants every three years. The survey should prove the use of clear methodology.

	COP of outdoor unit of project air conditioning	Specifications of project air
	system <i>i</i> . The value of cooling capacity and rated	conditioning system for the
$COP_{PJ,i,outdoor}$	electricity consumption used in the calculation	quotation or factory
	of COP prepared by manufacturer is applied.	acceptance test data by
		manufacturer.