JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Danublia of Viatnam	
Host Country	Socialist Republic of Vietnam	
Name of the methodology proponents	YUKO-KEISO Co., Ltd.	
submitting this form	Mitsubishi UFJ Morgan Stanley Securities Co.,	
	Ltd.	
Sectoral scope(s) to which the Proposed	2. Energy distribution	
Methodology applies		
Title of the proposed methodology, and	Installation of energy efficient transformers in a	
version number	power distribution grid, Version 1.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	14/07/2015	

History of the proposed methodology

Version	Date	Contents revised
1.0	14/07/2015	First edition

A. Title of the methodology

Installation of energy efficient transformers in a power distribution grid, Version 1.0

B. Terms and definitions

Terms	Definitions	
Power distribution grid	The portion of the electric system that is dedicated to	
	delivering electricity to the end-users.	
No-load losses	Losses of electricity due to transformer core magnetizing or	
	energizing. These losses occur whenever a transformer is	
	energized and remain constant regardless of the amount of	
	electricity flowing through it.	
Load losses	Losses of electricity due to resistance in the electrical	
	winding of the transformer. These losses include eddy current	
	losses in the primary and secondary conductors of the	
	transformer. These losses occur when the electricity flows	
	through the transformer.	

C. Summary of the methodology

Items Summary		
GHG emission reduction	Installation of energy efficient transformers (transformers with	
measures	amorphous metal core) in a power distribution grid reduces	
	no-load losses by transformers, which leads to reduction of	
	losses for grid electricity, thus reduction of GHG emissions.	
Calculation of reference	Reference emissions are calculated by no-load losses of the	
emissions	reference transformer, blackout rate and CO ₂ emission factor of	
	the grid.	
Calculation of project	Project emissions are calculated by no-load losses of the project	
emissions	transformer, maximum allowable uncertainty for the no-load	
	losses of the project transformer, blackout rate and CO_2	
	emission factor of the grid.	
Monitoring parameters	• Energizing time of the project transformer	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Single-phase and/or three-phase oil-immersed transformer with amorphous metal
	core is installed in the distribution grid.
Criterion 2	Load losses of the project transformer determined in line with IEC 60076-1 or
	national/industrial standards complying with IEC 60076-1 is equal or smaller
	than the standard values or specification values of load loss, required by the
	power company of the grid where the project transformer is installed,
	corresponding to its capacity and number of phases.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
No-load losses of grid electricity by reference transformers	CO ₂	
Project emissions		
Emission sources	GHG types	
No-load losses of grid electricity by project transformers	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Transformer with silicon steel core is commonly installed in Vietnam. On the one hand transformer with amorphous metal core has been installed to a very limited extent. Also, power companies in Vietnam have the standard or set tender specifications for no-load losses when procuring transformers, and such no-load losses is set on the premise of transformer with silicon steel core.

Therefore, transformer with silicon steel core is assumed to be reference transformer in this methodology.

Reference emissions are mainly determined by no-load loss of the reference transformer, however, blackout rate also affects the calculation of reference emissions. Blackout rate varies

among the regions, and it is improving year by year. To achieve net emission reductions, default value of blackout rate in Vietnam is set in a conservative manner.

F.2. Calculation of reference emissions

The reference emissions, RE_p , during the period p are given by:

$$RE_{p} = \sum_{i} (NLL_{RE,i,j,k} \times H_{i,p}) \times (1 - Br_{p}) \times EF_{grid} \times 10^{-6}$$

Where:

where.		
REp	: Reference emissions during the period $p [tCO_2/p]$	
i	: Identification number of the reference transformer	
j	: Identification number of the power company where the transformer i is	
	installed	
k	: Index which represents type of the reference transformer defined by its	
	capacity and number of phases	
NLL _{RE,i,j,k}	: No-load losses of the reference transformer i of capacity category k for the	
	power company <i>j</i> [W]	
H _{i,p}	: Energizing time of the project transformer i during the period p [hour/p]	
Br _p	: Blackout rate during the period <i>p</i> [fraction]	
EF _{grid}	: CO ₂ emission factor of the grid [tCO ₂ /MWh]	

G. Calculation of project emissions

The project emissions, PE_p , during the period p are given by:

$$PE_{p} = \sum_{i} [NLL_{PJ,i,j,k} \times (1 + UNC_{i}) \times H_{i,p}] \times (1 - Br_{p}) \times EF_{grid} \times 10^{-6}$$

Where:

PEp	: Project emissions during the period p [tCO ₂ /p]
i	: Identification number of the project transformer
j	: Identification number of the power company where the transformer i is
	installed
k	: Index which represents type of the project transformer defined by its capacity
	and number of phases
NLL _{PJ,i,j,k}	: No-load losses of the project transformer i of capacity category k for the power
	company <i>j</i> [W]

UNC _i	: Maximum allowable uncertainty for the no-load losses of the project	
	transformer <i>i</i> [fraction]	
H _{i,p}	: Energizing time of the project transformer i during the period p [hour/p]	
Brp	Br _p : Blackout rate during the period <i>p</i> [fraction]	
EF _{grid}	: CO ₂ emission factor of the grid [tCO ₂ /MWh]	

H. Calculation of emissions reductions

The emission reductions, ER_p , during the period p are given by:		
	$ER_{p} = RE_{p} - PE_{p}$	
Where:		
ERp	: Emission reductions during the period p [tCO ₂ /p]	
REp	: Reference emissions during the period p [tCO ₂ /p]	
PEp	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
NLL _{RE,i,j,k}	No-load losses of the reference transformer <i>i</i>	The latest standard for no-load
	of capacity category k for the power company	loss required by the power
	j.	companies, or the specification
	The no-load losses of the reference	value of no-load losses set by
	transformer <i>i</i> are determined <i>ex ante</i> by	the power companies
	applying the lower value of the latest standard	
	for no-load losses or the specification value of	
	no-load losses where applicable, required by	
	the power companies where the project	
	transformer is installed, corresponding to the	
	capacity and number of phases of the project	
	transformer <i>i</i> .	
NLL _{PJ,i,j,k}	No-load losses of the project transformer <i>i</i> of	Manufacturer's performance
	capacity category k for the power company j .	test report measured at the time
		of pre-delivery inspection
Br _p	Blackout rate during the period <i>p</i> .	Data obtained from power

		companies
	Default value: 1.87%	
UNC _i	Maximum allowable uncertainty for the	Manufacturer's performance
	no-load losses of the project transformer <i>i</i> .	test report measured at the time
		of pre-delivery inspection
EF _{grid}	CO ₂ emission factor of the grid.	Ministry of Natural Resources
		and Environment (MONRE),
		Vietnamese DNA for CDM
		unless otherwise instructed by
		the Joint Committee