JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Vietnam		
Name of the methodology proponents	Hibiya Engineering, Ltd.		
submitting this form	Mitsubishi UFJ Morgan Stanley Securities Co.,		
	Ltd.		
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and Improving the energy efficiency of commen			
version number	buildings by utilization of high efficiency		
	equipment, Version 01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	27/11/2014		

History of the proposed methodology

Version	Date	Contents revised
01.0	27/11/2014	First edition

A. Title of the methodology

Improving the energy efficiency of commercial buildings by utilization of high efficiency equipment, Version 01.0

B. Terms and definitions

Terms	Definitions	
High efficiency equipment	Building facility equipment listed in Table 1 of the eligibility	
	criterion 1.	
Reference equipment	Equipment whose output is replaced/substituted by the	
	project.	
Coefficient of Performance	For the purpose of this methodology, COP is defined as a	
(COP)	ratio of heat supplied to the amount of energy consumed by	
	chiller or heat pump, and it is defined by using following	
	formula:	
	COP = Q/W	
	Where:	
	Q: Amount of heat supplied by a chiller or a heat pump	
	W: Electric power consumed by a chiller or a heat pump	

C. Summary of the methodology

Items	Summary			
GHG emission reduction	Reduction of electricity and fossil fuel consumed by existing			
measures	facilities is achieved by replacing or substituting these facilities			
	with high efficiency equipment defined in Table 1 of the			
	eligibility criterion 1.			
Calculation of reference	Reference emissions are calculated by multiplying electricity			
emissions	and fossil fuel consumption of the project by the ratio of			
	efficiency of reference and project equipment, and emission			
	factors of electricity and fossil fuel.			
	For the installation of high efficiency lighting, reference			

	emissions are calculated using rated electricity consumption of		
	the lighting multiplied by operation hours.		
Calculation of project	Project emissions are calculated based on monitored electricity		
emissions	and fossil fuel consumption in the project.		
Monitoring parameters	Electricity and fossil fuel consumption of the high efficien		
	equipment		
	Operating hours of the high efficiency equipment and auxiliary		
	equipment, where applicable		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project involves implementation of one or more energy efficiency measures				
	categorized in Table 1 by using high efficiency equipment at an existing facility.				
	Projects involving installation of high efficiency lighting need to be coupled with				
	another energy saving measure(s) in order to be eligible under this methodology.				
	High efficiency equipment introduced by the project replaces the existing				
	uipment or substitutes the output of the existing equipment, and it is include	quipme	ed		
	the applicable technologies as shown in Table 1:	the ap			
	ble 1 Applicable Technologies	able 1			
		No E			
	Energy efficiency improvement by reducing fossil fuel consumptionHigh efficiency boiler with the following features: - Energy efficiency is greater or equal to 93% (e.g. small once -through boiler); - Equipped with automatic unit number control device; and - Individual performance test report is provided.	i r	:		
	Fuel switch to electricityHeat recovery heat pump which generates both cooling and heating energy (temperature of hot water \geq 80°C) and uses non-HFC refrigerant with 		1		
	Installation of high LED lighting efficiency lighting				
Criterion 2	the existing equipment is a chiller containing CFCs, HFCs, or HCFCs and is	the ex	s		
	removed due to the project, a plan to prevent release of refrigerant used for the				
	existing chiller into the atmosphere is prepared. Execution of the prevention plan				

	is checked at the time of verification, in order to confirm that the refrigerant used		
	for the existing chiller is not released to the air.		
Criterion 3	High efficiency equipment in the project guarantees a better performance than		
	the reference equipment for a minimum of one year.		
	The performance level can be confirmed by comparing the efficiency or rated		
	electricity consumption between the high efficiency equipment and the reference		
	equipment, with an evidence of either a manufacturer's performance guarantee		
	or energy saving company's (ESCO) energy saving guarantee of high efficiency		
	equipment. Where such evidence is not available for the reference equipment,		
	high efficiency equipment in the project guarantees a better performance than the		
	default efficiency values provided in the methodology.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Fossil fuel consumption by the reference equipment	CO ₂		
Electricity consumption by the reference equipment	CO ₂		
Project emissions			
Emission sources	GHG types		
Fossil fuel consumption by the high efficiency equipment or the	CO ₂		
equipment			
Electricity consumption by the high efficiency equipment	CO ₂		
Electricity consumption by the auxiliary equipment for the high	CO ₂		
efficiency equipment			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying electricity $(EC_{REF,i,p})$ and fossil fuel $(FC_{REF,i,p})$ consumption of the project by the ratio of efficiency of reference and project equipment, and emission factors of electricity and fossil fuel. Individual electricity and fossil fuel consumption are derived from monitored fuel and electricity consumption by the high

efficiency equipment. Below are typical examples of reference equipment replaced or substituted by high efficiency equipment.

	Energy efficiency measures	Project equipment	Typical examples of reference equipment
1	Energy efficiency improvement by reducing fossil fuel consumption	High efficiency boiler	Boiler
2	Fuel switch to electricity	Heat recovery heat pump	Boiler Chiller
3	Installation of high efficiency lighting	LED lighting	Halogen Fluorescent

The methodology ensures net emission reductions by the followings:

1) Adopting conservative default efficiency values for calculation of reference emissions

- Boilers: applying CDM default efficiency for new boilers;
- Chillers: design efficiency of models sold by dominant manufacturers in the chiller market in Vietnam

2) Implementation of multiple measures

Among the three measures introduced in this methodology, one measure (installation of high efficiency lighting) may have a possibility where the calculation result will not demonstrate net emission reductions due to the way the equation is formulated. In order to ensure the net emission reductions, the methodology requires to implement together with other energy efficiency measure(s) stated in table 1 under the eligibility criteria.

F.2. Calculation of reference emissions

Reference emissions are calculated by the following equation:

$$RE_{p} = \frac{\sum_{i} EC_{REF,i,p}}{1,000} \times EF_{CO2,ELEC} + \sum_{i} \sum_{j} \left(FC_{REF,i,j,p} \times EF_{CO2,j} \right)$$
(1)

Where

RE_p	Reference emissions during the period p [tCO ₂ /p]
$EC_{REF,i,p}$	Electricity consumed during the period p by reference equipment
	corresponding to measure <i>i</i> introduced in the project [kWh/p]
$EF_{CO2,ELEC}$	CO ₂ emission factor of electricity consumed [tCO ₂ /MWh]

Fossil fuel j consumed during the period p by reference equipment,		
corresponding to measure i introduced in the project [L/p].		
CO_2 emission factor of fossil fuel <i>j</i> [t CO_2/L]		
Type of measure		
Type of fossil fuel		

Measure 1: High efficiency boiler

$$FC_{REF,1,p} = \sum_{i} FC_{PJ1,i,p} \times \frac{\eta_{PJ1,i}}{\eta_{REF1,i}}$$
(2)

Where

- $FC_{REF,1,p}$ Total fossil fuel that would have been consumed during the period p by the reference equipment, replaced/substituted by the high efficiency equipment introduced in the project categorized as measure 1 [L/p]
- $FC_{PJI,i,p}$ Fossil fuel consumed during the period p by the high efficiency equipment i introduced in the project categorized as measure 1 [L/p]
- $\eta_{PJI,i}$ Energy efficiency of the equipment *i* introduced in the project. [dimensionless] $\eta_{REFI,i}$ Energy efficiency of the reference equipment, replaced/substituted by the equipment *i* introduced in the project. [dimensionless]

Measure 2: Heat recovery heat pump

_ _

$$FC_{REF,2,p} = \sum_{i} \frac{EC_{PJ2,i,p}}{ECR_{i}} \times H_{i} \times DC_{i}$$
(3)

$$EC_{REF,2,p} = \sum_{i} \frac{EC_{PJ2,i,p}}{ECR_{i}} \times \frac{CH_{i}}{COP_{i}}$$
(4)

Where

 $FC_{REF,2,p}$ Total fossil fuel that would have been consumed during the period p by the
reference equipment, replaced/substituted by the high efficiency equipment in the
project categorized as measure 2 [L/p] $EC_{PJ2,i,p}$ Electricity consumed during the period p by the high efficiency equipment i in
the project categorized as measure 2 [kWh/p] ECR_i Rated electricity consumption of the high efficiency equipment i introduced in the
project [kW] H_i Rated heating capacity of the high efficiency equipment i in the project [kW] DC_i Unit fuel consumption rate of the reference equipment that are replaced/substituted

	by the equipment i in the project (L/kWh)			
$EC_{REF,2,p}$	$C_{REF,2,p}$ Total electricity that would have been consumed during the period p by the			
	reference equipment, replaced/substituted by the high efficiency equip	oment		
	introduced in the project categorized as measure 2 [kWh/p]			
CH_i	H_i Rated cooling capacity of the high efficiency equipment <i>i</i> introduced in the			
	project [kW]			
COP_i	Efficiency of reference cooling equipment replaced/substituted by the equipmen			
	<i>i</i> introduced in the project. [dimensionless]			
Measure	Measure 3: LED lighting			
$EC_{REF,3,p} = \sum_{i} ECR_{REF3,i} \times t_{i,p} $ (5)				
K	i i i i i i i i i i i i i i i i i i i			
Where				

 $EC_{REF,3,p}$ Total electricity that would have been consumed during the period p by the
reference equipment, replaced/substituted by the high efficiency equipment
introduced in the project categorized as measure 3 [kWh/p] $ECR_{REF3,i}$ Rated electricity consumption of the reference equipment i, replaced by the high
efficiency equipment i in the project categorized as measure 3 [kW] $t_{i,p}$ Operating hours of the high efficiency equipment i during the period p in the
project categorized as measure 3 [hr/p]

G. Calculation of project emissions

Project emissions are calculated as a sum of emissions from electricity (EC_{PJ}) and fossil fuel (FC_{PJ}) consumption in the project. The emission from electricity consumption is calculated by multiplying electricity consumed by the project $(EC_{PJ,i,p})$ by the CO₂ emission factor of electricity $(EF_{CO2,ELEC})$. The emission from fuel consumption is calculated by multiplying fuel consumed by the project $(FC_{PJ,i,p})$ by the emission factor of the fuel $(EF_{CO2,j})$.

$$PE_{p} = \frac{\sum_{i} EC_{PJ,i,p}}{1,000} \times EF_{CO2,ELEC} + \sum_{i} \sum_{j} \left(FC_{PJ,i,j,p} \times EF_{CO2,j} \right)$$
(6)

Where

PE_p	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	Total electricity consumed by the high efficiency equipment by measure i
	introduced in the project during the period p [kWh/p]

$EF_{CO2,ELEC}$	CO ₂ emission factor of the electricity consumed [tCO ₂ /MWh]	
$FC_{PJ,i,j,p}$	Total fossil fuel j consumed by the high efficiency equipment by measure i	
	introduced in the project during the period p [L/p]	
$EF_{CO2,j}$	CO_2 emission factor of fossil fuel <i>j</i> [t CO_2/L]	
i	Type of measure	
j	Type of fossil fuel	

Measure 1: High efficiency boiler

$$FC_{PJ,1,p} = \sum_{i} FC_{PJ1,i,p}$$

$$\tag{7}$$

Where

$FC_{PJ,1,p}$	Total fossil fuel consumed during the period p by the high efficiency	
	equipment introduced in the project categorized as measure 1 [L/p]	
$FC_{PJ1,i,p}$	Fossil fuel consumed during the period p by the high efficiency equipment	
	i introduced in the project categorized as measure 1 [L/p]	

Measure 2: Heat recovery heat pump

$$EC_{PJ,2,p} = \sum_{i} \left(EC_{PJ2,i,p} + ECA_{i} \times t_{p} \right)$$
(8)

Where

$EC_{PJ,2,p}$	Total electricity consumed during the period p by the high efficiency
	equipment introduced in the project categorized as measure 2 [kWh/p]
$EC_{PJ2,i,p}$	Electricity consumed during the period p by the high efficiency equipment
	i introduced in the project categorized as measure 2 [kWh/p]
ECA_i	Capacity of auxiliary electric equipment that is installed due to the
	implementation of the high efficiency equipment i [kW]
t_p	Operating hours of auxiliary electric equipment during the period p [hr/p]

Measure 3: LED lighting

$$EC_{PJ,3,p} = \sum_{i} \left(EC_{PJ3,i} \times t_{i,p} \right) \tag{9}$$

Where

$EC_{PJ,3,p}$	Total electricity consumed during the period p by the high efficiency
	equipment introduced in the project categorized as measure 3 [kWh/p]
$EC_{PJ3,i}$	Rated electricity consumption of the high efficiency equipment i in the
	project categorized as measure 3 [kW]
$t_{i,p}$	Operating hours of the high efficiency equipment i introduced in the

(10)

project during the period *p* categorized as measure 3 [hr/p]

H. Calculation of emissions reductions

Emission reduction is calculated by the following equation.

$$ER_p = RE_p - PE_p$$

Where

ER_p	Emission reduction during the period p [tCO ₂ /p]
RE_p	Reference emission during the period p [tCO ₂ /p]
PE_p	Project emission during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$\eta_{PJ1,i}$	Energy efficiency of the equipment <i>i</i> introduced in the	Rated/provided by the
	project	technology supplier
$\eta_{REF1,i}$	Energy efficiency of the reference equipment	Default values in the
	replaced/substituted by the equipment <i>i</i> introduced in	methodology
	the project	
ECR _i	Rated electricity consumption of the high efficiency	Rated/provided by the
	equipment <i>i</i> introduced in the project	technology supplier
H_i	Rated heating capacity of the high efficiency	Rated/provided by the
	equipment <i>i</i> introduced in the project	technology supplier
DC_i	Unit fuel consumption rate of the reference equipment	Rated/provided by the
	replaced/ substituted by the equipment i introduced in	technology supplier
	the project	
CH_i	Rated cooling capacity of the high efficiency	Rated/provided by the
	equipment <i>i</i> introduced in the project	technology supplier
COP_i	Efficiency of the reference equipment	Default values in the
	replaced/substituted by the equipment <i>i</i> introduced in	methodology
	the project	
ECR _{REF3,i}	Rated electricity consumption of the reference	Rated/provided by the
	equipment (lighting) <i>i</i> replaced by the high efficiency	technology supplier or

	equipment <i>i</i> in the project categorized as measure 3	checked by the
		indication on the
		lighting <i>i</i>
ECA_i	Capacity of auxiliary electric equipment that is	Rated/provided by the
	installed due to the implementation of the high	technology supplier
	efficiency equipment <i>i</i>	
$EC_{PJ3,i}$	Rated electricity consumption of the high efficiency	Rated/provided by the
	lighting <i>i</i> in the project categorized as measure 3	technology supplier
EF _{CO2,ELEC}	CO ₂ emission factor of the electricity consumed	[EF _{grid}]
		Ministry of Natural
	When captive power generation is not available at the	Resources and
	project site, then the most recent Vietnamese national	Environment
	grid emission factor $[EF_{grid}]$ available at the time of	(MONRE), Vietnamese
	validation is applied as $[EF_{CO2,ELEC}]$ and fixed for the	DNA for CDM unless
	monitoring period thereafter.	otherwise instructed by
		the Joint Committee.
	When captive power generation is available at the	
	project site, then $[EF_{CO2,ELEC}]$ is conservatively selected	[EF _{captive}]
	as below and fixed for the monitoring period thereafter:	CDM approved small
	C I	scale methodology:
	$EF_{CO2,ELEC} = min (EF_{grid}, EF_{captive})$	AMS-I.A
	$EF_{captive} = 0.8 \text{ tCO}_2/\text{MWh}^*$	
	*The most recent emission factor available from CDM	
	approved small scale methodology AMS-I.A at the time of	
	validation is applied.	
EF _{CO2,j}	CO_2 emission factor of fossil fuel <i>j</i>	IPCC or international
CO2,J		organization's default
		values, or derived using
		country specific or
		project specific data.
		project specific data.