JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Vietnam	
Name of the methodology proponents	DAIICHI JITSUGYO CO., LTD.	
submitting this form	Institute for Global Environmental Strategies	
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable- / non-	
Methodology applies	renewable sources)	
Title of the proposed methodology, and	Introduction of Biomass Cogeneration	
version number	System, Ver. 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	29/07/2022	

History of the proposed methodology

Version	Date	Contents revised
01.0	29/07/2022	First Edition

A. Title of the methodology

Introduction of Biomass Cogeneration System, Ver. 01.0

B. Terms and definitions

Terms	Definitions	
Biomass	Biomass is non-fossilized and biodegradable organic	
	material originating from plants, animals and	
	microorganisms. This includes products, by-products,	
	residues and waste from agriculture, forestry and related	
	industries as well as the non-fossilized and biodegradable	
	organic fractions of industrial and municipal wastes.	
Biomass residue	Biomass residues are defined as biomass that is a by-	
	product, residue or waste stream from agriculture, forestry	
	and related industries. This does not include municipal	
	waste or other wastes that contain fossilized and/or non-	
	biodegradable material (however, small fractions of inert	
	inorganic material like soil or sands may be included).	
Biomass boiler	A boiler which combusts biomass fuel to heat water and	
	produce steam.	
Biomass Cogeneration System	A system that consists of biomass boiler(s), steam turbine(s)	
	and power generator(s) and supplies both electricity and	
	heat.	
Boiler efficiency	The ratio of the total absorption heating value of the usable	
	heat output to the heat amount contained in fuel fired in the	
	boiler. In other words, it means that 1.0 minus the fraction	
	of the heat loss. The heat loss includes the one by blow	
	water.	
Drain	Drain is a waste hot water which is trapped and condensed	
	after waste steam at process of works is caught by steam	
	trap.	

C. Summary of the methodology

Items	Summary
	J

CHC omission and	Electricity and heat generated by a Dissert Court	
GHG emission reduction	Electricity and heat generated by a Biomass Cogeneration	
measures	System installed in a project site replace all or part of grid	
	and/or captive electricity (generated by fossil fuel) as well as	
	heat (generated by fossil fuel), which leads to efficient energy	
	use of recipient facility(ies) and results in GHG emission	
	reductions.	
Calculation of reference	Reference emissions are CO ₂ emissions for electricity supply	
emissions	and CO ₂ emissions for heat supply.	
	CO ₂ emissions for electricity supply are calculated with the	
	amount of electricity (generated by project biomass	
	cogeneration system) supplied to the recipient facility and CO ₂	
	emission factor for the displaced electricity system.	
	CO ₂ emissions for heat supply are calculated by heat quantity	
	of steam (generated by project biomass cogeneration system)	
	supplied to the recipient facility, reference boiler efficiency and	
	CO ₂ emission factor for fossil fuel consumed by the reference	
	boiler.	
Calculation of project	Project emissions are CO ₂ emissions from combustion of fossil	
emissions	fuel by biomass boiler(s) of project biomass cogeneration	
	system and CO ₂ emissions from biomass transportation.	
	CO ₂ emissions from combustion of fossil fuel by biomass	
	boiler(s) of project biomass cogeneration system are calculated	
	by the amount of fossil fuel consumed by biomass boiler(s) of	
	project biomass cogeneration system, net calorific value of	
	fossil fuel used by biomass boiler(s) of project biomass	
	cogeneration system and CO ₂ emission factor of fossil fuel used	
	by biomass boiler(s) of project biomass cogeneration system.	
	CO ₂ emissions from biomass transportation are calculated by	
	roundtrip distance of biomass transportation, mass of	
	transported biomass and CO ₂ emission factor for biomass	
	transportation.	
Manifestania	-	
Monitoring parameters	• Amount of electricity (generated by project biomass	
	cogeneration system) supplied to the recipient facility	
	• Amount of steam (generated by project biomass	
	cogeneration system) supplied to the recipient facility	
	• Temperature of feed water into biomass boiler(s) of project	

biomass cogeneration system
 Temperature of drain recovery water reused by biomass boiler(s) of project biomass cogeneration system
 Amount of fossil fuel consumed by project biomass cogeneration system
 Amount of auxiliary fossil fuel(s) consumption at the start-up by the project biomass boiler(s) of project biomass cogeneration system
 Round trip distance of biomass transportation
 Mass of transported biomass
 Date when biomass fuels imported to Viet Nam are used for the project

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	A biomass cogeneration system is newly installed in the project site.	
Criterion 2	The biomass boiler(s) of the project biomass cogeneration system uses only	
	solid biomass fuels made of biomass residues.	
Criterion 3	Biomass residues utilized for the project are not used for energy application in	
	the absence of the project activity. This can be demonstrated by the letter from	
	suppliers of biomass.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fossil fuel(s) consumed for generation of heat to produce steam by	CO_2	
reference boiler		
Grid electricity and/or captive electricity generated by fossil fuel	CO_2	
Project emissions		
Emission sources	GHG types	
Auxiliary fossil fuel(s) combusted by the project cogeneration system	CO_2	
Fossil fuel(s) consumption by biomass transportation between the place	CO ₂	
of biomass supplier's stockyard and the project site		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

In order to secure net emission reductions in this methodology, the reference emissions are conservatively calculated in the following manners.

- The reference CO₂ emission factor

The default emission factors are set in a conservative manner based on the Viet Nam's national grid. The emission factor is calculated based on the electric power source mix of the past three years published by Vietnamese government identifying 1) primary fuel type which has the largest volume of generated electricity among the fossil fuel types used as a source and 2) the best heat efficiencies derived from the type of power plants currently operational in Viet Nam according to the identified primary fuel type.

- In case the recipient facility in a project activity is connected to the national grid including through an internal grid which is not connected to a captive power generator

In case the recipient facility in a project activity is connected to an internal grid which is connected to both the national grid and a captive power generator

The emission factor of 0.333 tCO₂/MWh is applied, which is calculated based on the heat efficiency of the most efficient natural gas-fired power plant supplying electricity to the national grid. The value is lower than the emission factor of the Viet Nam grid published by the government of Viet Nam, which is 0.8458 tCO₂/MWh (combined margin, 2019), and ensures net emission reductions.

- In case the recipient facility in a project activity is connected to an internal grid which is not connected to the national grid

The emission factor of a diesel power generator is calculated by applying the default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generator, and set to 0.533 tCO₂/MWh.

- A default value for the reference boiler efficiency is conservatively set to 92% taking the default value provided as "Natural gas without condenser" in table 1 (Default efficiency factor for thermal applications) of CDM Methodological tool 09 "Determining the baseline efficiency of thermal or electric energy generation systems" Version 03.0.

F.2. Calculation of reference emissions

$$RE_n = RE_{elec.n} + RE_{heat.n}$$

*RE*_p Reference emissions during the period p [tCO₂/p]

 $RE_{elec,p}$ Reference emissions for electricity supply during the period p [tCO₂/p]

 $RE_{heat,p}$ Reference emissions for heat supply during the period p [tCO₂/p]

$$RE_{elec,p} = ES_{elec,p} \times EF_{elec,RE}$$

ESelec,p Amount of electricity (generated by project biomass cogeneration system)

supplied to the recipient facility during the period p [MWh/p]

EF_{elec,RE} Reference CO₂ emission factor for the displaced electricity system [tCO₂/MWh]

$$RE_{heat,p} = \frac{SS_{PJ,p} \times (h''_{steam} - h'_{fw,p})}{10^3} \times \frac{1}{\eta_{RE}} \times EF_{fuel,RE}$$

SS_{PJ,p} Amount of steam (generated by project biomass cogeneration system) supplied to

the recipient facility during the period p [t/p]

 h''_{steam} Specific enthalpy of supplied steam [MJ/t]

 h'_{fwp} Specific enthalpy of feed water into biomass boiler(s) of project biomass

cogeneration system during the period p [MJ/t]

 η_{RE} Reference boiler efficiency [dimensionless]

EF_{fuel,RE} CO₂ emission factor for fossil fuel consumed by the reference boiler [tCO₂/GJ]

In case that $T_{fw,p}$ is monitored

$$h'_{fw,n} = (T_{fw,n} - 0) \times C_n$$

In case that $T_{fw,p}$ is not monitored and $T_{dw,p}$ is monitored

$$h'_{fw,p} = (T_{dw,p} - 0) \times C_p$$

 $T_{fw,p}$ Temperature of feed water into biomass boiler(s) of project biomass cogeneration

system during the period p [degree Celsius]

 T_{dwn} Temperature of drain recovery water reused by biomass boiler(s) of project

biomass cogeneration system during the period p [degree Celsius]

 C_n Specific heat capacity of water [MJ/(t· Δ K)]

Note 1) In case that the displaced heat supply system includes biomass boiler(s), $RE_{heat,p}$ is regarded as 0.

G. Calculation of project emissions

$$PE_p = PE_{fuel,p} + PE_{tr,p}$$

 PE_p Project emissions during the period p [tCO₂/p]

 $PE_{fuel,p}$ Project emissions from combustion of fossil fuel by biomass boiler(s) of project

biomass cogeneration system during the period p [tCO₂/p]

 $PE_{tr,p}$ Project emissions from biomass transportation during the period p [tCO₂/p]

$$PE_{fuel,p} = \sum_{i} FC_{PJ,i,p} \times NCV_{fuel,PJ,i} \times EF_{fuel,PJ,i}$$

i Identification number of fossil fuel type [-]

 $FC_{PJ,i,p}$ Amount of auxiliary fossil fuel consumption at the start-up by biomass boiler(s)

of project biomass cogeneration system for the fuel type i during the period p

[mass or volume/p]

NCV_{fuel,PLi} Net calorific value of auxiliary fossil fuel used by biomass boiler(s) of project

biomass cogeneration system for the fuel type i [GJ/mass or volume]

*EF*_{fuel,PJ,i} CO₂ emission factor of auxiliary fossil fuel used by biomass boiler(s) of project

biomass cogeneration system for the fuel type i [tCO₂/GJ]

Note 2) If the combined rated output (corresponding value for thermal output) of the project cogeneration system is equal to or less than 45 MW, the amount of fossil fuel consumed as auxiliary fuel to calculate $PE_{fuel,p}$ may be neglected, following paragraph 24 and 25 in CDM Methodological Tool "Project and leakage emissions from biomass (version 04.0)" and paragraph 114 (a) (iv) in "CDM project standard for project activities (version 02.0)" decided by CDM-EB meeting 101. However, the amount of fossil fuel consumed due to lack of biomass fuel cannot be neglected.

$$PE_{tr,p} = \sum_{i} D_{j,p} \times m_{j,p} \times EF_{tr}$$

j Identification number of the round trip for biomass transportation between the place of biomass supplier's stockyard and the project site [-]

 $D_{j,p}$ Round trip distance of the biomass transportation j during the period p [km]

 $m_{j,p}$ Mass of biomass transported in the biomass transportation j during the period p

[t/p]

 EF_{tr} CO₂ emission factor for biomass transportation [tCO₂/t·km]

Note 3) If the round trip distance for biomass transportation $D_{j,p}$ is less than 200 km and the total rated thermal output of the project biomass boiler(s) is equal to or less than 45 MW, $PE_{tr,p}$ may be neglected, following paragraphs 27 and 28 in CDM Methodological Tool "Project and leakage emissions from biomass (version 02.0)" and paragraph 114 (a) (iv) in "CDM project standard for project activities (version 02.0)" decided in the CDM-EB meeting 101.

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

 ER_p Emission reductions during the period p [tCO2/p] RE_p Reference emissions during the period p [tCO2/p] PE_p Project emissions during the period p [tCO2/p]

Note) For the period when biomass fuels obtained out of the host country are used for the project because of lack of biomass fuel, emission reductions are regarded as 0.

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$EF_{elec,RE}$	Reference CO ₂ emission factor for the	The default emission factor
	displaced electricity system	is derived from the result of
		the survey on the generation
	The value for EF _{elec,RE} is selected from the	efficiency of major natural

	emission factor based on the national grid	gas-fired power plants in
	(EF _{RE,grid}) or based on captive diesel power	Viet Nam and the default
	generator ($EF_{RE,cap}$) in the following manners:	heat efficiency of 49%
		which is set above the value
	In case the displaced electricity system in a	of the most efficient diesel
	project activity is connected to the national	power generator.
	grid including through an internal grid which	The default value is revised
	is not connected to a captive power generator,	if deemed necessary by the
	EF _{RE,grid} , 0.333 tCO ₂ /MWh is applied.	JC.
	In case the displaced electricity system in a	
	project activity is connected to an internal grid	
	which is connected to both the national grid	
	and a captive power generator, EF _{RE,grid} , 0.333	
	tCO ₂ /MWh is applied.	
	In case the displaced electricity system in a	
	proposed project activity is connected to an	
	internal grid which is not connected to the	
	national grid, EF _{RE,cap} , 0.533 tCO ₂ /MWh is	
	applied.	
h" _{steam}	Specific enthalpy of produced steam [MJ/t].	Saturated steam table based
		on "IAPWS Industrial
		Formulation" (e.g. steam
		table published by The
		Japan Society of
		Mechanical Engineers),
		using the values for setting
		steam pressure according to
		vendor specification,
		contract condition by the
		steam buyer or operation
		manual on the site.
C_p	Specific heat capacity of water	Theoretical value provided
F	Default value is set to 4.184 [MJ/($t \cdot \Delta K$)]	in table 6 of Cabinet Order
	[()]	No. 357 of 1992, Japan
		, заран

$\eta_{\it RE}$	Reference boiler efficiency [dimensionless].	The default value provided
	The default value is set to 0.92.	as "Natural gas without
		condenser" in table 1
		(Default efficiency factor
		for thermal applications) of
		CDM Methodological tool
		09 "Determining the
		baseline efficiency of
		thermal or electric energy
		generation systems" Version
		03.0
EF _{fuel,RE}	CO ₂ emission factor for fossil fuel consumed	In the order of preference:
	by the reference boiler [tCO ₂ /GJ].	a) regional or national
	CO ₂ emission factor of natural gas is applied in	default values; or
	this methodology in a conservative manner.	b) IPCC default values
		provided in table 1.4 of Ch.1
		Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Lower
		value is applied.
$NCV_{fuel,PJ,i}$	Net calorific value of auxiliary fossil fuel	In the order of preference:
	used by the project biomass boiler(s) for the	a) values provided by fuel
	fuel type <i>i</i> [GJ/mass or volume]	supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values; or
		d) IPCC default values
		provided in table 1.2 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Upper
		value is applied.

$EF_{fuel,PI,i}$	CO ₂ emission factor	CO ₂ emission factor of auxiliary fossil fuel		
140,1),1		used by the project biomass boiler(s) for the		
	fuel type <i>i</i> [tCO ₂ /GJ]			
			supplier; b) measurement by the	
			project participants;	
			c) regional or national	
			default values; or	
			d) IPCC default values	
			provided in table 1.4 of Ch.1	
			Vol.2 of 2006 IPCC	
			Guidelines on National	
			GHG Inventories. Upper	
			value is applied.	
<i>EF</i> _{tr}	CO ₂ emission factor for	r biomass transportation	CDM methodological tool	
	[tCO ₂ /t·km]		"TOOL 12: Project and	
			leakage emissions from	
	The default value in	The default value in the following table is		
	applied.		version 01.1.0"	
	Vehicle class	$EF_{tr}[tCO_2/t\cdot km]$		
	Light vehicles	0.000245		
	Heavy vehicles	0.000129		
	Light vehicles: Vehicle	es with a gross vehicle		
	mass being less or equa	al to 26 tonnes.		
	Heavy vehicles: Vehic	les with a gross vehicle		
	mass being higher than	26 tonnes.		
	Note 4) If both vehicle	Note 4) If both vehicle classes are used in the		
	project, the higher valu	project, the higher value (0.000245 tCO ₂ /t·km)		
	is applied.	is applied.		
	Note 5) If biomass is tr	Note 5) If biomass is transported by river boat,		
	the lower value (0.0	the lower value (0.000129 tCO ₂ /t·km) is		
	applied in conservative	e manner.		
	According to a lot of r	naterials by Ministry of		
		Transport and Tourism,		
	Japan (MLITJ), CO ₂ er	nission intensity by ship		

(including on river) is much lower than the one	
by truck transportation.	