JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Vietnam		
Name of the methodology proponents	DAIICHI JITSUGYO CO., LTD.		
submitting this form	Institute for Global Environmental Strategies		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable- / non-		
Methodology applies	renewable sources)		
itle of the proposed methodology, and Introduction of Biomass Boiler, Ver. 01.0			
version number			
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	29/07/2022		

History of the proposed methodology

Version	Date	Contents revised
01.0	29/07/2022	First Edition

A. Title of the methodology

Introduction of Biomass Boiler, Ver. 01.0

B. Terms and definitions

Terms	Definitions	
Biomass	Biomass is non-fossilized and biodegradable organic	
	microorganisms. This shall include products, by-products, residues and waste from agriculture, forestry and related	
	industries as well as the non-lossifized and biodegradable	
	organic fractions of industrial and municipal wastes.	
Biomass residue	Biomass residues are defined as biomass that is a by- product, residue or waste stream from agriculture, forestry	
	and related industries. This shall not include municipal	
	waste or other wastes that contain fossilized and/or non-	
	biodegradable material (however, small fractions of inert	
	inorganic material like soil or sands may be included).	
Biomass boiler	A boiler which combusts biomass fuel to heat water and	
	produce steam.	
Boiler efficiency	The ratio of the total absorption heating value of the usable	
	heat output to the heat amount contained in fuel fired in the	
	boiler. In other words, it means that 1.0 minus the fraction	
	of the heat loss. The heat loss includes the one by blow	
	water.	
Drain	Drain is a waste hot water which is tranned and condensed	
Diam	often weste steem at meesses of works is cought by steem	
	after waste steam at process of works is caught by steam	
Drain recovery system	Drain recovery system is equipment which recovers drain	
	with some heating energy and reuses for boiler feed water.	

C. Summary of the methodology

Items	Summary		
GHG emission reduction	One or more biomass boilers are introduced and combust		
measures	biomass fuel instead of fossil fuels to generate heat and produce		
	steam, resulting in reduction of GHG emissions from fossil		
	fuels.		
Calculation of reference	Reference emissions are CO ₂ emissions from heat generation		
emissions	by a reference boiler which combusts fossil fuel(s). They are		
	calculated by amount of produced steam by the project biomass		
	boiler(s), specific enthalpies of steam and water, reference		
	boiler efficiency and a CO ₂ emission factor of fossil fuel.		
Calculation of project	Project emissions are CO ₂ emissions from electricity consumed		
emissions	by the project biomass boiler(s), combustion of fossil fuel(s) by		
	the project biomass boiler(s) and biomass transportation.		
	CO ₂ emissions from consumed electricity are calculated by		
	amount of electricity consumed by the project biomass boiler(s)		
	and its CO ₂ emission factor.		
	In case the project biomass boiler(s) combusts fossil fuel(s) as		
	well as biomass fuel, project emissions include CO ₂ emissions		
	from the combustion of fossil fuel(s), which are calculated by		
	amount of fossil fuel(s), net calorific value of fossil fuel(s) and		
	its/their CO ₂ emission factors.		
	CO ₂ emissions from biomass transportation are calculated by		
	roundtrip distance of biomass transportation, mass of		
	transported biomass and a CO ₂ emission factor for biomass		
	transportation.		
Monitoring parameters	• Amount of steam produced by the project biomass boiler(s)		
	• Temperature of feed water into project biomass boiler(s)		
	• Temperature of drain recovery water reused by project		
	biomass boiler(s)		
	• Amount of electricity consumed by the project biomass		
	boiler(s) and ancillary equipment		
	• Amount of auxiliary fossil fuel(s) consumption at the start-		
	up by the project biomass boiler(s)		
	• Round trip distance of biomass transportation		
	• Mass of transported biomass		
	• Class of vehicle (and/or ship) used for biomass		

transportation
• Date when biomass fuels imported to Viet Nam are used for
the project

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project newly installs biomass boiler(s) or replaces an existing fossil fuel-	
	fired boiler(s) with biomass boiler(s) to generate heat and steam .	
Criterion 2	The project boiler(s) uses only solid biomass fuels made of biomass residues.	
Criterion 3	Biomass residues utilized for the project are not used for energy application in	
	the absence of the project activity. This can be demonstrated by the letter from	
	suppliers of biomass.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fossil fuel(s) consumed for generation of heat to produce steam	CO ₂	
by reference boiler		
Project emissions		
Emission sources	GHG types	
Electricity consumed by the project biomass boiler(s) and	CO ₂	
ancillary equipment		
Auxiliary fossil fuel(s) consumed during the start-up by the	CO ₂	
project biomass boiler(s)		
Fossil fuel(s) consumption by biomass transportation between	CO_2	
biomass supplier's stockyard and the project site		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on the amount of steam produced by the project boiler(s), specific enthalpies of produced steam and feed water, reference boiler efficiency and a CO_2 emission factor of reference fossil fuel.

In order to secure net emission reductions in this methodology, a default value for the reference boiler efficiency is conservatively set to 92% taking the default value provided as "Natural gas

without condenser" in table 1 (Default efficiency factor for thermal applications) of CDM Methodological tool 09 "Determining the baseline efficiency of thermal or electric energy generation systems" Version 03.0.

F.2. Calculation of reference emissions

$$\begin{split} RE_{p} &= \frac{SP_{PJ,p} \times (h''_{steam} - h'_{fw,p})}{10^{3}} \times \frac{1}{\eta_{RE}} \times EF_{fuel,RE} \\ RE_{p} & \text{Reference emissions during the period } p [\text{tCO}_2/\text{p}] \\ SP_{PJ,p} & \text{Amount of steam produced by the project biomass boiler(s) during the period } p \\ [t/\text{p}] \\ h''_{steam} & \text{Specific enthalpy of produced steam [MJ/t]} \\ h'_{fw,p} & \text{Specific enthalpy of feed water into project biomass boiler(s) during the period } p \\ [MJ/t] \\ \eta_{RE} & \text{Reference boiler efficiency [-]} \\ EF_{fuel,RE} & \text{CO}_2 \text{ emission factor for fossil fuel consumed by the reference boiler [tCO_2/GJ]} \\ \text{In case that } T_{fw,p} \text{ is monitored} \\ h'_{fw,p} = (T_{fw,p} - 0) \times C_{p} \\ \text{In case that } T_{fw,p} \text{ is not monitored and } T_{dw,p} \text{ is monitored} \\ h'_{fw,p} = (T_{dw,p} - 0) \times C_{p} \\ \text{Where:} \\ h'_{fw,p} & : \text{ Specific enthalpy of feed water into project biomass boiler(s) during the period } p \\ [degree Celsius] \\ T_{dw,p} & : \text{ Temperature of feed water into project biomass boiler(s) during the period } p \\ [degree Celsius] \\ C_{p} & : \text{ Specific heat capacity of water [MJ/(t_\Delta K)]} \\ \end{split}$$

G. Calculation of project emissions

 $PE_{p} = PE_{elec,p} + PE_{fuel,p} + PE_{tr,p}$ PE_{p} Project emissions during the period p [tCO₂/p]

$PE_{elec,p}$	Project emissions from consumed electricity by the project biomass boiler(s) and
	ancillary equipment during the period p [tCO ₂ /p]
$PE_{fuel,p}$	Project emissions from combustion of fossil fuel by the project boiler(s) during
	the period p [tCO ₂ /p]
$PE_{tr.p}$	Project emissions from biomass transportation during the period $p [tCO_2/p]$

 $PE_{elec,p}$ is calculated as below.

 $PE_{elec,p} = EC_{PJ,p} \times EF_{elec}$

 $EC_{PJ,p}$ Amount of electricity consumed by the project biomass boiler(s) and ancillary equipment during the period p [MWh/p]

*EF*_{elec} CO₂ emission factor of consumed electricity [tCO₂/MWh]

<<u>Identification of EC_{PJ,p}></u>

Project participants may select either of the following two options to obtain a value for $EC_{PJ,p}$

- Option R1: Monitor electricity consumption by the project biomass boiler(s) and ancillary equipment
- Option R2: In case that electricity consumption by the project biomass boiler(s) and ancillary equipment is not monitored, calculate electricity consumption in a conservative manner as follows;

 $EC_{PJ,p} = RC_{PJ} \times 24 \times D_p$

*RC*_{*PJ*} Total rated capacity of equipment consuming electricity [MW]

 D_p Number of days during a given time period p [day/p]

Note) If the total rated thermal output of the project biomass boiler(s) is equal to or less than 45 MW, $PE_{elec,p}$ may be neglected, following paragraphs 24 and 25 in CDM Methodological Tool "Project and leakage emissions from biomass (version 04.0)" and paragraph 114 (a) (iv) in "CDM project standard for project activities (version 02.0)" decided by CDM-EB meeting 101.

 $PE_{fuel,p}$ is calculated as below.

$$PE_{fuel,p} = \sum_{i} FC_{PJ,i,p} \times NCV_{fuel,PJ,i} \times EF_{fuel,PJ,i}$$

i Identification number of fossil fuel type [-]

$$FC_{PJ,i,p}$$
 Amount of auxiliary fossil fuel consumed during the start-up by the project
biomass boiler(s) for the fuel type *i* during the period *p* [mass or volume/p]

$$NCV_{fuel,PJ,i}$$
 Net calorific value of auxiliary fossil fuel used by the project biomass boiler(s)
for the fuel type *i* [GJ/mass or volume]

$$EF_{fuel,PJ,i}$$
 CO₂ emission factor of auxiliary fossil fuel used by the project biomass boiler(s)
for the fuel type *i* [tCO₂/GJ]

Note) If the total rated thermal output of the project biomass boiler(s) is equal to or less than 45 MW, the amount of fossil fuel consumed as auxiliary fuel to calculate $PE_{fuel,p}$ may be neglected, following paragraph 24 and 25 in CDM Methodological Tool "Project and leakage emissions from biomass (version 04.0)" and paragraph 114 (a) (iv) in "CDM project standard for project activities (version 02.0)" decided by CDM-EB meeting 101. However, the amount of fossil fuel consumed due to lack of biomass fuel cannot be neglected.

 $PE_{tr,p}$ is calculated as below.

Option P1-1 (Normal option in case that there is not relay point(s) in biomass transportation j)

$$PE_{tr,p} = \sum_{j} D_{j,p} \times m_{j,p} \times EF_{tr}$$

j Identification number of the round trip for biomass transportation between the place of biomass supplier's stockyard and the project site [-]

 $D_{j,p}$ Round trip distance of the biomass transportation *j* during the period *p* [km]

 $m_{j,p}$ Mass of biomass transported in the biomass transportation *j* during the period *p* [t]

Option P1-2 (Normal option in case that there is relay point(s) in biomass transportation *j*)

 $D_{j,p}$ is regarded as the total round trip distance by way of the relay point. And then $PE_{tr,p}$ is calculated as follows:

$PE_{tr,p} = \sum_{j} \sum_{k} D_{j,k,p} \times m_{j,k,p} \times EF_{tr}$			
$PE_{tr;p}$	Project emissions from biomass transportation during the period p [tCO ₂ /p]		
j	Identification number of the round trip for biomass transportation between the		
	place of biomass supplier's stockyard and the project site [-]		
k	Identification number of transportation process in biomass transportation j		
	between the place of biomass supplier's stockyard and the project site [-]		
$D_{j,k,p}$	Round trip distance of transportation process k in the biomass transportation j		
	during the period <i>p</i> [km]		
$m_{j,k,p}$	Mass of biomass transported at transportation process k in the biomass residue		
	transportation <i>j</i> during the period <i>p</i> [tonne/p]		
EF_{tr}	CO ₂ emission factor for the biomass transportation [tCO ₂ /tonne-km]		
Option P2-1	(Conservative option in case that vehicle class is monitored))		
	$PE_{tr,p} = D_{max,p} \times m_{total,p} \times EF_{tr}$		
Option P2-2	Conservative option in case that vehicle class is not monitored)		
	$PE_{tr,p} = D_{max,p} \times m_{total,p} \times EF_{tr,higher}$		
$PE_{tr,p}$	Project emissions from biomass transportation during the period p [tCO ₂ /p]		
$D_{max,p}$	The longest round trip distance of the biomass transportation during the period p		
	[km]		
$m_{total,p}$	Total mass of biomass brought to the project site during the period p [tonne/p]		
EF_{tr}	CO2 emission factor for biomass transportation [tCO2/ tonne-km]		
$EF_{tr;higher}$	The higher value of CO_2 emission factor for biomass transportation [t CO_2 / tonne-		
	km]		
Note1) If the	e round trip distance for biomass transportation $D_{j,p}$ is less than 200 km, and the		
total rated thermal output of the project biomass boiler(s) is equal to or less than 45 MW,			
$PE_{tr,p}$ may be neglected, following paragraphs 27 and 28 in CDM Methodological Tool			
"Project and leakage emissions from biomass (version 02.0)" and paragraph 114 (a) (iv) in			

"CDM project standard for project activities (version 02.0)" decided in the CDM-EB meeting 101.

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

ER_p	Emission reduct	ions during the	period p [tCO ₂ /p]
1		Ū,	

 RE_p Reference emissions during the period p [tCO₂/p]

 PE_p Project emissions during the period p [tCO₂/p]

Note) On days that biomass fuels imported to Viet Nam are used for the project because of lack of biomass fuel, emission reductions on those days are regarded as 0.

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
h"steam	Specific enthalpy of produced steam [MJ/t].	Saturated steam table based
		on "IAPWS Industrial
		Formulation" (e.g. steam
		table published by The
		Japan Society of
		Mechanical Engineers),
		using the values for setting
		steam pressure according to
		vendor specification,
		contract condition by the
		steam buyer or operation
		manual on the site.
C _p	Specific heat capacity of water	Theoretical value provided
	Default value is set to 4.184 [MJ/($t \cdot \Delta K$)]	in table 6 of Cabinet Order
		No. 357 of 1992, Japan
η_{RE}	Reference boiler efficiency [-].	The default value provided
	The default value is set to 0.92.	as "Natural gas without
		condenser" in table 1
		(Default efficiency factor
		for thermal applications) of
		CDM Methodological tool
		09 "Determining the

		baseline efficiency of
		thermal or electric energy
		generation systems" Version
		03.0
$EF_{fuel,RE}$	CO ₂ emission factor for fossil fuel consumed	In the order of preference:
	by the reference boiler [tCO ₂ /GJ].	a) regional or national
	CO ₂ emission factor of natural gas is applied in	default values; or
	this methodology in a conservative manner.	b) IPCC default values
		provided in table 1.4 of Ch.1
		Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Lower
		value is applied.
RC_{PJ}	Total rated capacity of equipment consuming	Manufacture's specification
	electricity [MW]	of the equipment
EF_{elec}	CO ₂ emission factor of consumed electricity	Grid electricity:
	[tCO ₂ /MWh].	Ministry of Natural
		Resources and Environment
	When the biomass boiler(s) consumes only	of Vietnam (MONRE),
	grid electricity or captive electricity, the	Vietnamese DNA
	project participant applies the CO ₂ emission	for CDM unless otherwise
	factor respectively.	instructed by the Joint
		Committee.
	When both grid electricity and captive	
	electricity may be consumed by the project	Captive electricity:
	biomass boiler(s), the project participant	For the option a)
	applies the CO ₂ emission factor with higher	Specification of the captive
	value.	power generation system
		connected to the boiler,
	[CO ₂ emission factor]	provided by the
	For grid electricity: The most recent value	manufacturer (η_{cap} [%]).
	available from the source stated in this table at	CO ₂ emission factor of the
	the time of validation.	fuel consumed by the
		captive power generation
	For captive electricity:	system connected to the
	It is determined based on the following	boiler (<i>EF</i> _{fuel,cap} [tCO ₂ /GJ])

options:	in order of preference:
	1) values provided by the
a) Calculated from its power generation	fuel supplier;
efficiency (η_{cap} [%]) obtained from	2) measurement by the
manufacturer's specification	project participants;
The power generation efficiency based on	3) regional or national
lower heating value (LHV) of the captive	default values;
power generation system from the	4) IPCC default values
manufacturer's specification is applied;	provided in table 1.4 of Ch.1
$EE = 2.6 \times \frac{100}{5} \times EE$	Vol.2 of 2006 IPCC
$EF_{elec} = 5.6 \times \frac{1}{\eta_{cap}} \times EF_{fuel,cap}$	Guidelines on National
	GHG Inventories. Upper
b) Calculated from measured data	value is applied.
The power generation efficiency calculated	
from monitored data of amount of fuel input	For the option b)
for power generation $(FC_{cap,p})$ and amount of	Generated and supplied
electricity generated $(EG_{cap,p})$ during the	electricity by the captive
monitoring period p is applied. The	power generation system
measurement is conducted with the monitoring	connected to the biomass
equipment to which calibration certificate is	boiler(s) (<i>EG_{cap}</i> , [MWh/p]).
issued by an entity accredited under	Fuel amount consumed by
national/international standards;	the captive power
$EF_{elec} = FC_{cap,p} \times NCV_{fuel,cap} \times EF_{fuel,cap}$	generation system
x <u>1</u>	connected to the biomass
$CEG_{cap,p}$	boiler(s) (FC_{cap} , [mass or
	volume/p]).
Where:	Net calorific value
<i>NCV</i> _{fuel,cap} : Net calorific value of the fuel	(<i>NCV</i> _{fuel,cap} [GJ/mass or
consumed by the captive power generation	volume]) and CO ₂ emission
system connected to the boiler [GJ/mass or	factor of the fuel $(EF_{fuel,cap})$
volume]	[tCO ₂ /GJ]) in order of
	preference:
c) <u>Conservative default value:</u>	1) values provided by the
A value of $1.3 \text{ tCO}_2/\text{MWh}$ may be applied.	fuel supplier;
	2) measurement by the
	project participants;

		3) regional or national
		default values:
		4) IPCC default values
		provided in tables 1.2 and
		1.4 of Ch 1 Vol 2 of 2006
		IPCC Guidelines on
		National GHG Inventories
		Unner value is annlied
		opper value is applied.
		For the option c)
		CDM methodological tool
		"TOOL 05: Baseline,
		project and/or leakage
		emissions from electricity
		consumption and
		monitoring of electricity
		generation, version 03.0"
NCV _{fuel,PJ,}	Net calorific value of auxiliary fossil fuel	In the order of preference:
	used by the project biomass boiler(s) for the	a) values provided by fuel
	fuel type <i>i</i> [GJ/mass or volume]	supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values; or
		d) IPCC default values
		provided in table 1.2 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Upper
		value is applied.

$EF_{fuel,PJ,i}$	CO2 emission factor of auxiliary fossil fue	In order of preference:
	used by the project biomass boiler(s) for the	a) values provided by fuel
	fuel type <i>i</i> [tCO ₂ /GJ]	supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values; or
		d) IPCC default values
		provided in table 1.4 of Ch.1
		Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Upper
		value is applied.
EF _{tr}	CO2 emission factor for biomass transportation	CDM methodological tool
	for the biomass transportation	""""""""""""""""""""""""""""""""""""""
	[tCO ₂ /(tonne·km)]	leakage emissions from
		transportation of freight,
	The default value in the following table is	version 01.1.0"
	applied.	
	Vehicle class $EF_{tr,p}$	
	[tCO ₂ /(tonne·km)]	
	Light vehicles 0.000245	
	Heavy vehicles 0.000129	
	Light vehicles: Vehicles with a gross vehicle	;
	mass being less or equal to 26 tonnes.	
	Heavy vehicles: Vehicles with a gross vehicle	;
	mass being higher than 26 tonnes.	
	Note1) If both vehicle classes are used in the	;
	project, the higher value (0.000245	;
	tCO ₂ /(tonne·km)) is applied.	
	Note2) If biomass is transported by river boat,	
	the lower value (0.000129 tCO ₂ /(tonne·km)) is	\$
	applied in conservative manner.	
	According to a lot of materials by Ministry of	

	Land, Infrastructure, Transport and Tourism,	
	Japan (MLITJ), CO ₂ emission intensity by ship	
	(including on river) is much lower than the one	
	by truck transportation.	
EF _{tr,higher}	The higher value of CO ₂ emission factor for	CDM methodological tool
	biomass transportation [tCO2/(t·km)]	"TOOL 12: Project and
	The default value of the parameter set as	leakage emissions from
	0.000245 [tCO ₂ /(t·km)] which is applied to the	transportation of freight,
	vehicle class of "Heavy vehicles" in $EF_{tr,p}$ in	version 01.1.
	conservative manner.	