JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Vietnam
Name of the methodology proponents	Nihon Crant Co. Ltd.
submitting this form	
Sectoral scope(s) to which the Proposed	7. Transport
Methodology applies	
Title of the proposed methodology, and	Modal Shift from Truck to Cargo Ship with
version number	Freshness Preservation Reefer Container,
	Version 01.0
List of documents to be attached to this	The attached draft JCM-PDD:
form (please check):	Additional information
Date of completion	27/03/2022

History of the proposed methodology

Version	Date	Contents revised
01.0	27/03/2022	First edition

A. Title of the methodology

Modal shift from truck to cargo ship with freshness preservation reefer container, Version 01.0

B. Terms and definitions

Terms	Definitions
Freshness	A reefer container which forms static electric field to maintain
Preservation Reefer	freshness of foods and so on.
Container	
Reference route	A reference route is a route of land transportation from an origin (O)
	where the freight is picked up to a destination (D) where the freight is
	delivered.
	O Land Transportation D
Project route	A project route is a route of the following transportations:
	• Land transportation from an origin (O) to a departure port (Pd)
	where the freight is loaded on a cargo ship.
	• Water transportation from a departure port (Pd) to an arrival port
	(Pa) where the freight is unloaded.
	• Land transportation from an arrival port (Pa) to a destination (D).
	Land transportation Pd Water transportation

C. Summary of the methodology

	Items		Summary
GHG	emission	reduction	Modal shift from truck (reference route) to cargo ship (project
measu	res		route) leads to reduction of fossil fuel consumption per

			transportation of a unit of freight.
Calculation	of	reference	Reference emissions are calculated from total mass of project
emissions			freight transported through the project land route, one-way land
			transportation distance of the reference route, a CO ₂ emission
			factor.
Calculation	of	project	Project emissions include the emissions resulting from land
emissions			transportation by trucks, and water transportation by cargo
			ships.
			(1) Land transportation
			Project emissions from land transportation are calculated from
			total mass of project freight transported through the project land
			route, one-way land transportation distance of the project route
			and a CO_2 emission factor.
			(2) Water transportation
			Project emissions from water transportation consist of fossil
			fuel consumption by cargo ships and electricity consumption by
			reefer containers.
			(a) Fossil fuel consumption by cargo ships
			Project emissions from fossil fuel consumption by cargo ships
			are calculated by using one of the following options, in order of
			preference:
			• Option.1 Energy-based approach
			Project emissions from fossil fuel consumption by cargo
			ships are calculated from fossil fuel consumption by cargo
			ships through the project water transportation activity, total
			mass of project freight transported through the project
			water transportation activity, total mass of all freight
			transported through the project water transportation
			activity, net calorific value and a CO_2 emission factor.
			Option. 2 Activity-based approach
			Project emissions from fossil fuel consumption by cargo
			ships are calculated from total mass of project freight
			transported through the project water transportation
			activity, one-way water transportation distance of the
			project activity, and a CO ₂ emission factor.

	 (b) Electricity consumption by reefer containers Project emissions from electricity consumption by reefer containers are calculated from total electricity consumption by project reefer containers transported through the project water transportation activity and a CO₂ emission factor, if applicable.
	Project emissions from fuel/electricity consumption by gantry cranes to load the freight on a cargo ship and unload the freight from a cargo ship are excluded from project emissions since the ratio of project emissions from gantry cranes to the total project emissions are considered to be very small.
Monitoring parameters	 One-way land transportation distance of the reference route One-way land transportation distance of the project route One-way water transportation distance of the project activity Total mass of project freight transported through the project land route Fossil fuel consumption by cargo ships through the project water transportation activity Total mass of project freight transported through the project water transportation activity Total mass of project freight transported through the project water transportation activity Total mass of all freight transported through the project water transportation activity Total electricity consumption by project reefer containers transported through the project water transportation activity

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Freshness preservation reefer containers are introduced.
Criterion 2	The freshness preservation reefer containers are transported by water.
Criterion 3	A plan for prevention of releasing refrigerant used for project reefer containers
	is prepared. In the case of replacing the existing reefer containers with the
	project reefer containers, a plan for prevention of releasing refrigerant used in

the existing reefer containers to the air (e.g. re-use the pure refrigerants and/or recover and destroy blend refrigerants) is prepared. Execution of this plan is checked at the time of verification, in order to confirm that refrigerant used for the existing one replaced by the project is prevented from being released to the air.

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Fossil fuel combustion by truck	CO ₂		
Project emissions			
Emission sources	GHG types		
Fossil fuel combustion by truck	CO ₂		
Fossil fuel combustion by cargo ships	CO ₂		
Electricity consumption by reefer containers	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated from total mass of project freight transported through the project land route, one-way land transportation distance of the reference route, a CO_2 emission factor for land transportation per freight tonne kilometres. Total mass of project freight transported through the project land route and one-way land transportation distance of the reference route are monitored through the crediting period.

To ensure net emission reductions, a CO_2 emission factor for land transportation per freight tonne kilometres is set in a conservative manner, which is referred to the CDM methodology "AM0090 Modal shift in transportation of cargo from road transportation to water or rail transportation Version 1.1.0".

Type of cargo transported	Emission factor (tCO ₂ /tonne-km)
Perishable and semi-perishable foodstuff and canned food	0.000094

F.2. Calculation of reference emissions

$RE_p =$	$\sum_{i} (FR_{PJ,i,p} \times AD_{RE,land,i} \times EF_{FR,land})$	
Where		
RE_p	: Reference emissions during the period <i>p</i> [tCO ₂ /p]	
$FR_{PJ,i,p}$: Total mass of project freight transported through the project land route <i>i</i> during period <i>p</i> [tonne/p]	
	* <i>FR</i> _{<i>PJ,i,p</i>} does not include tare weight of containers.	
$AD_{RE,land,i}$: One-way land transportation distance of the reference route <i>i</i> [km]	
$EF_{FR,land}$: CO ₂ emission factor for land transportation per freight tonne kilometres	
	[tCO ₂ /tonne-km]	
i	: Indication number of the land transportation route as follows;	
	- For project route: a combination of a route from the origin to departure	
	port and from arrival port to the destination.	
	- For reference route: a route from the origin to the destination, which	
	are the same as the project route.	
* Electr	ricity consumption by reefer containers is also considered as an emission source	
during land transportation, however it is already included in the emission factor for		
land t	transportation per freight tonne kilometres.	

G. Calculation of project emissions

$PE_p =$	$PE_{land,p} + PE_{water,p}$
Where	
PE_p	: Project emissions during the period <i>p</i> [tCO ₂ /p]
$PE_{land,p}$: Project emissions from land transportation during the period p
	$[tCO_2/p]$
PE _{water,p}	: Project emissions from water transportation during the period p
	$[tCO_2/p]$

(1) $PE_{land n}$	are calculated as below.
(-)iunu,p	

$$PE_{land,p} = \sum_{i} (FR_{PJ,i,p} \times AD_{PJ,land,i} \times EF_{FR,land})$$

Where

$FR_{PJ,i,p}$	 Total mass of project freight transported through the project land route <i>i</i> during period <i>p</i> [tonne/p] * <i>FR_{PJ,i,p}</i> does not include tare weight of containers. One way land transportation distance of the project route <i>i</i> [lum]
$AD_{PJ,land,i}$: One-way land transportation distance of the project route <i>t</i> [km]
$L\Gamma$ FR, land	kilometres [tCO ₂ /tonne km]
i	· Indication number of the land transportation route as follows:
L	- For project route: a combination of a route from the origin to
	departure port and from arrival port to the destination.
	- For reference route: a route from the origin to the destination,
	which are the same as the project route.
* Electricity con	nsumption by reefer containers is also considered as an emission source
during land tra	ansportation, however it is already included in the emission factor for
land transport	ation per freight tonne kilometres.
(2) <i>PE_{water,p}</i> are	e calculated as below.
	$PE_{water,p} = PE_{ship,p} + PE_{container,p}$
Where	
$PE_{ship,p}$: Project emissions from fossil fuel consumption by cargo ships
	during the period p [tCO ₂ /p]
$PE_{container,p}$: Project emissions from electricity consumption by reefer
	containers transported through the project water transportation
	containers transported through the project water transportation during the period p [tCO ₂ /p]
	containers transported through the project water transportation during the period p [tCO ₂ /p]
(a) $PE_{ship,p}$ are calculated as $1 + 1 = 1$	containers transported through the project water transportation during the period <i>p</i> [tCO ₂ /p] alculated by using one of the following options.
(a) <i>PE_{ship,p}</i> are ca Option 1	 containers transported through the project water transportation during the period p [tCO₂/p] alculated by using one of the following options. Energy-based approach
(a) <i>PE_{ship,p}</i> are ca Option 1	containers transported through the project water transportation during the period p [tCO ₂ /p] alculated by using one of the following options. : Energy-based approach $PE_{ship,p} = \sum_{j} \left(FC_{ship,j,p} \times NCV_{j} \times EF_{fuel,j} \times \frac{FR_{PJ,j,p}}{FR_{all,j,p}} \right)$
(a) $PE_{ship,p}$ are ca Option 1 Where	containers transported through the project water transportation during the period <i>p</i> [tCO ₂ /p] alculated by using one of the following options. : Energy-based approach $PE_{ship,p} = \sum_{j} \left(FC_{ship,j,p} \times NCV_{j} \times EF_{fuel,j} \times \frac{FR_{PJ,j,p}}{FR_{all,j,p}} \right)$
(a) $PE_{ship,p}$ are can Option 1 Where $FC_{ship,j,p}$	containers transported through the project water transportation during the period <i>p</i> [tCO ₂ /p] alculated by using one of the following options. : Energy-based approach $PE_{ship,p} = \sum_{j} \left(FC_{ship,j,p} \times NCV_{j} \times EF_{fuel,j} \times \frac{FR_{PJ,j,p}}{FR_{all,j,p}} \right)$: Fossil fuel consumption by cargo ships through the project water

NCV_j	: Net calorific value for fossil fuel used by cargo ships through the
	project water transportation activity j [GJ/mass of volume]
$EF_{fuel,j}$: CO_2 emission factor for fossil fuel used by cargo ships through the
	project water transportation activity j [tCO ₂ /GJ]
$FR_{PJ,j,p}$: Total mass of project freight transported through the project water
	transportation activity j during the period p [tonne/p]
	* <i>FR</i> _{<i>PJ,j,p</i>} includes tare weight of containers.
$FR_{all,j,p}$: Total mass of all freight transported through the project water
	transportation activity j during the period p [tonne/p]
	* <i>FR</i> _{all,j,p} includes tare weight of containers.
j	: Indication number of the project water transportation activity
Option 2	: Activity-based approach
	$PE_{ship,p} = \sum_{i} (FR_{PJ,j,p} \times AD_{PJ,water,j} \times EF_{FR,water,j})$
Where	,
$FR_{PJ,j,p}$: Total mass of project freight transported through the project water
	transportation activity j during the period p [tonne/p]
	* $FR_{PJ,j,p}$ includes tare weight of containers.
$AD_{PJ,water,j}$: One-way water transportation distance of the project activity <i>j</i>
	[km]
$EF_{FR,water,j}$: CO_2 emission factor for the project water transportation activity <i>j</i>
	per freight tonne kilometres [tCO2/tonne-km]
j	: Indication number of the project water transportation activity.
(b) <i>PE_{container,p}</i> a	are calculated as below.
	$PE_{conatiner,p} = \sum_{j} EC_{container,j,p} \times EF_{elec}$
Where	
$EC_{container,j,p}$: Total electricity consumption by project reefer containers
	transported through the project water transportation activity j
	during the period p [MWh/p]
EF_{elec}	: CO ₂ emission factor for consumed electricity from captive power
	generation [tCO ₂ /MWh]
* In the case of	Option1, Energy-based approach, if fuel consumption for captive power
generation is i	ncluded in $FC_{shin,i,n}$, then $PE_{container,n}$ is calculated as zero.
0	

* Project emissions from fuel/electricity consumption by gantry cranes to load the freight on a cargo ship and unload the freight from a cargo ship are excluded from project emissions since the ratio of project emissions from gantry cranes to the total project emissions are considered to be very small.

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

Where

ER_p	:	Emission reductions during the period p [tCO ₂ /p]
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
PE_p	:	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$EF_{FR,land}$	CO ₂ emission factor for land transportation per	The default values provided in
	freight tonne kilometres [tCO ₂ /tonne-km]	the CDM methodology "AM0090 Modal shift in
	Type of cargo transportedEmission factor (tCO2/tonne-km)Perishable and semi- perishable foodstuff and canned food0.000094	transportation of cargo from road transportation to water or rail transportation Version 1.1.0".
NCVj	Net calorific value for fossil fuel used by cargo ships through the project water transportation activity <i>j</i> [GJ/mass of volume]	 In the order of preference: a) Values provided by the fuel supplier; b) Measurement by the project participants; c) Reginal or national default

				values;	
				d) IPCC default values	
				provided in 2006 IPCC	
				Guidelines on National	
				GHG Inventories. Upper	
				value is applied.	
$EF_{fuel,j}$	CO ₂ emission	n factor for fossil fu	el used by	In the order of preference:	
	cargo ships th	rough the project w	vater	a) Values provided by the fu	el
	transportation	n activity <i>j</i> [tCO ₂ /G.	ſ]	supplier;	
				b) Measurement by the proje	ct
				participants;	
				c) Reginal or national defaul	t
				values;	
				d) IPCC default values	
				provided in 2006 IPCC	
				Guidelines on National	
				GHG Inventories. Upper	
				value is applied.	
EF_{elec}	CO ₂ emission	n factor for consume	ed electricity	CDM methodological to	ool
	from captive	power generation [t	CO ₂ /MWh]	"TOOL 05: Baseline, proje	ect
				and/or leakage emissions fro	m
	The default e	mission factor of 1.	3 is applied.	electricity consumption a	nd
				monitoring of electric	ity
				generation, version 03.0"	
$EF_{FR,water,j}$	CO ₂ emission	n factor for water tra	ansportation	The default values provided	n
	activity j per	freight tonne kilom	etres	Table 9.1 in the "Second IMC)
	[tCO ₂ /tonne-]	km]		Greenhouse Gas Study 2009'	,
				issued by IMO.	
	Type of ship	Size	Emission		
			factor (tCO ₂ /tonne-		
			km)		
	Container	8,000 + TEU	0.0000125		
	Ship	5,000 – 7,999 TEU	0.0000166		
		3,000 – 4,999 TEU	0.0000166		
		2,000 – 2,999 TEU	0.0000200		
		1,000 – 999 TEU	0.0000321		
		0 – 999 TEU	0.0000363		

* TEU stands for Twenty-Foot Equivalent
Unit which can be used to measure a ship's
cargo carrying capacity.