JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Viet Nam		
Name of the methodology proponents	Sapporo Breweries Limited		
submitting this form			
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Energy Saving by Introduction of High		
version number	Efficiency Screw Chiller(s), Version 01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	03/09/2019		

History of the proposed methodology

Version	Date	Contents revised		
01.0	03/09/2019	First Edition		

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Screw Chiller(s), Version 01.0

B. Terms and definitions

Terms	Definitions		
Screw chiller	Screw chiller is equipment to cool water by utilizing a vapor		
	compression refrigeration cycle and an assembly of screw		
	type compressor(s), condenser and evaporator, with		
	interconnections.		
Cooling capacity	Cooling capacity is the capability of individual chiller to		
	remove heat. In this methodology, "cooling capacity" is used		
	to represent a cooling capacity for each chiller and not for a		
	system with multiple chiller units.		

C. Summary of the methodology

Items	Summary		
GHG emission reduction	High efficiency screw chiller(s) is introduced to save energy,		
measures	which leads to GHG emission reductions.		
Calculation of reference	Reference emissions are GHG emissions from the usage of		
emissions	reference chiller(s), calculated with amount of electricity		
	consumed by project chiller(s), ratio of COPs (Coefficient Of		
	Performance) of reference/project chillers and CO ₂ emission		
	factor for electricity consumed.		
Calculation of project	Project emissions are GHG emissions from the usage of project		
emissions	chiller(s), calculated with amount of electricity consumed by		
	project chiller(s) and CO ₂ emission factor for electricity		
	consumed.		
Monitoring parameters	Amount of electricity consumed by the project chiller(s)		

D. Eligibility criteria

Criterion 1	The project installs screw chiller(s) with a cooling capacity which is more than					
	or equal to 75 USRt and less than 270 USRt.					
	*1 USRt = 3.52 kW					
Criterion 2	COP of project chiller <i>i</i> calculated under the standardizing temperature					
	conditions* (COP _{PJ,tc}	<i>i</i>) is more than t	he threshold COP va	alues set in the table		
	below. ("x" in the table	e represents cool	ing capacity per indiv	vidual chiller)		
	Cooling capacity per	chiller (USRt)	75≤x<150	150≤x<270		
	Threshold COP valu	e	4.65	4.77		
	[Equation to calculate	$COP_{PJ,tc,i}]$				
	$COP_{PJ,tc,i} = COP_{PJ,i}$	× [(T _{cooling-out,i}	$-T_{chilled-out,i} + TE$	$\mathbf{D}_{chilled} + \mathbf{T}\mathbf{D}_{cooling}$		
	÷ (3	$7 - 7 + TD_{chille}$	$d + TD_{cooling})]$			
	$COP_{PJ,tc,i}$: CO	OP of project chi	iller <i>i</i> calculated und	ler the standardizing		
	ter	nperature condition	ons* [-]			
	$COP_{PJ,i}$: CO	OP of project ch	iller <i>i</i> on the catalo	og conditions of the		
	pro	oject chiller [-]				
	T _{cooling-out,i} : Ou	$T_{cooling-out,i}$: Output cooling water temperature of project chiller <i>i</i> set on				
	the	the catalog conditions of the project chiller [degree Celsius]				
	$T_{chilled-out,i}$: Output chilled water temperature of project chiller <i>i</i> set on the					
	catalog conditions of the project chiller [degree Celsius]					
	TD _{chilled} : Temperature difference between evaporating temperature of					
	refrigerant and output chilled water temperature:					
	1.5	1.5 degrees Celsius set as a default value [degree Celsius]				
	TD _{cooling} : Temperature difference between condensing temperature of					
	refrigerant and output cooling water temperature:					
	1.5 degrees Celsius set as a default value [degree Celsius]					
	* The standardizing to	emperature condit	ions at which COP(s) for project chiller(s)		
	calculated in this meth	nodology are show	wn below:			
	Chilled water: Ou	tput / degrees	Celsius			
	Inj Cooling water	trut 27 degrees	Celsius			
		uput 37 degrees	Celsius			
Criterion 3	111 Ozona Danlation Bat	$\frac{52 \text{ degrees}}{2}$	CUSIUS	project chillor(s) is		
Cinterion 5		muai (ODP) of th	ie reingeräht used IC	n project childer(s) is		
	zero.					

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 4	A plan for prevention of releasing refrigerant used for project chiller is prepared.
	In the case of replacing the existing chiller with the project chiller, a plan for
	prevention of releasing refrigerant used in the existing chiller to the air (e.g.
	re-use the pure refrigerants and/or recover and destroy blend refrigerants) is
	prepared. Execution of this plan is checked at the time of verification, in order to
	confirm that refrigerant used for the existing one replaced by the project is
	prevented from being released to the air.

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Electricity consumption by reference chiller(s)	CO_2	
Project emissions		
Emission sources GHG types		
Electricity consumption by project chiller(s)	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying amount of electricity consumed by project chiller(s), ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

Taking into the cooling capacity which is less than 300 USRt, a chiller with screw type compressor is possible to be used to cool water. As the efficiency of air-cooled screw type chillers are lower than those of water-cooled type, COP of reference chiller is conservatively set as a default value in the following manner to ensure net emission reductions based on the COP values of the marketed water-cooled screw chillers with a standard/an average efficiency in Viet Nam.

1. The COP values vary by its cooling capacity.

2. The maximum value of COP in each cooling capacity range set for this methodology is defined as $COP_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (COP_{PJ,tc,i} \div COP_{RE,i}) \times EF_{elec} \}$$

 RE_p :Reference emissions during the period p [tCO₂/p] $EC_{PJ,i,p}$:Amount of electricity consumed by project chiller i during the period p [MWh/p] $COP_{PJ,tc,i}$:COP of project chiller i calculated under the standardizing temperature conditions [-] $COP_{RE,i}$:COP of reference chiller i under the standardizing temperature conditions [-] EF_{elec} :CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

$$PE_{p}: \qquad \text{Project emissions during the period } p \ [tCO_{2}/p]$$

$$EC_{PJ,i,p}: \qquad \text{Amount of electricity consumed by project chiller } i \ \text{during the period } p \ [MWh/p]$$

$$EF_{elec}: \qquad \text{CO}_{2} \ \text{emission factor for consumed electricity } \ [tCO_{2}/MWh]$$

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

ER_p :	Emission reductions during the period p [tCO ₂ /p]
RE_p :	Reference emissions during the period p [tCO ₂ /p]
PE_p :	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity	[Grid electricity]
	[tCO ₂ /MWh].	Ministry of Natural Resources
		and Environment of Vietnam

When project chiller(s) consume only grid	(MONRE), Vietnamese DNA
electricity or captive electricity generated by	for CDM unless otherwise
fossil fuel, the project participant applies the	instructed by the Joint
CO ₂ emission factor respectively.	Committee.
When project chiller(s) may consume all or	[Captive electricity]
two of the three electricity types (grid, captive	For the option (a)
by fossil fuel, and captive by renewable	Specification of the captive
energy), the project participant applies the	power generation system
CO ₂ emission factor with lower value.	provided by the manufacturer
	$(\eta_{elec,CG} [\%]).$
[CO ₂ emission factor]	CO ₂ emission factor of the
(1) For grid electricity	fossil fuel type used in the
The most recent value available from the	captive power generation
source stated in this table at the time of	system (EF _{fuel,CG} [tCO ₂ /GJ])
validation	
	For the option (b)
(2) For captive electricity	Generated and supplied
If the amount of electricity generated by	electricity by the captive power
renewable energy sources estimated from their	generation system (EG _{PJ,CG,p}
generation capacities is equal to or less than	[MWh/p]).
half of the total electricity consumption at the	Fuel amount consumed by the
project site, the captive CO ₂ emission factor is	captive power generation
determined from the following options using	system (FC _{PJ,CG,p} [mass or
the data of fossil fuel generation only by	volume/p]).
option (a) or option (b).	Net calorific value (NCV $_{\mbox{fuel},\mbox{CG}}$
If the amount is more than half, the CO_2	[GJ/mass or volume]) and CO_2
emission factor is determined by option (b)	$emission factor (EF_{fuel,CG}$
using total of the amount of electricity	$[tCO_2/GJ])$ of the fuel
generated by both fossil fuel and renewable	consumed by the captive
sources for EG _{PJ,CG,p} .	power generation system in
	order of preference:
Option (a) Calculated from its power	1) values provided by the fuel
generation efficiency ($\eta_{elec,CG}$ [%]) obtained	supplier;
from manufacturer's specification	2) measurement by the project
The power generation efficiency based on	participants;
lower heating value (LHV) of the captive	3) regional or national default

power generation system from the	values;
manufacturer's specification is applied;	4) IPCC default values
	provided in tables 1.2 and 1.4
$\text{EF}_{\text{elec}} = 3.6 \times \frac{1}{\eta_{\text{elec,CG}}} \times \text{EF}_{\text{fuel,CG}}$	of Ch.1 Vol.2 of 2006 IPCC
	Guidelines on National GHG
Option (b) Calculated from measured data	Inventories. Lower value is
The power generation efficiency calculated	applied.
from monitored data of the amount of fuel	
input for power generation $(FC_{PJ,CG,p})$ and the	[Captive electricity with diesel
amount of electricity generated (EG _{PJ,CG,p})	fuel]
during the monitoring period p is applied.	CDM approved small scale
FC _{PJ,CG,p} includes the amount of fossil fuel	methodology: AMS-I.A.
input only but does not include renewable	
energy. The amount of electricity generated	[Captive electricity with
includes both by fossil fuel and renewable	natural gas]
energy when necessary. The measurement is	2006 IPCC Guidelines on
conducted with the monitoring equipment to	National GHG Inventories for
which calibration certificate is issued by an	the source of EF of natural gas.
entity accredited under national/international	CDM Methodological tool
standards;	"Determining the baseline
$EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$	efficiency of thermal or
1	electric energy generation
$\sim \overline{\mathrm{EG}_{\mathrm{PJ,CG,p}}}$	systems version 02.0" for the
Where:	default efficiency for off-grid
$NCV_{fuel,CG}$: Net calorific value of fuel	power plants.
consumed by the captive power generation	
system [GJ/mass or volume]	
Note:	
In case the captive electricity generation	
system meets all of the following conditions,	
the value in the following table may be	
applied to EF_{elec} depending on the consumed	
fuel type.	
• The system is non-renewable generation	
system	

	• Electricity generation capacity of the			
	system is less than or equal to 15 MW			
	fuel type	Diesel fuel	Natural gas	
	EF _{elec}	0.8 *1	$0.46 *_2$	
	*1 The most	recent value	at the time of	
	validation is app	olied.		
	*2 The value is	calculated with	the equation in	
	the option (a)	above. The	ower value of	
	default effectiv	$Ve CO_2 \text{ emiss}$	101 Iactor Ior	
	officient value	of default	officiency for	
	off-grid gas	UI UCIAUII	efficiency for (42%) are	
	applied	uronic system	(-2/0) alt	
COP _{PE i}	COP of refe	rence chiller	<i>i</i> under the	The default COP values are
	standardizing te	mperature cond	litions [-]	derived from the result of
	8	r		survey on COPs of chillers.
	The project participant selects the default			The survey should prove the
	value in the following table in line with			use of clear methodology. The
	cooling capacity of the project chiller <i>i</i> . ("x" in			default values of $COP_{RE,i}$
	the table represents cooling capacity per			should be revised if necessary
	individual chiller)			from survey result which is
				conducted by the Joint
	Cooling capacity 75≤x<150 150≤x<270			Committee or project
	per chil	ler		participants.
	(USRt)			
	$COP_{RE,i}$	4.65	4.77	
	*1 USRt = 3.52	kW		~
$COP_{PJ,i}$	COP of proje	ct chiller <i>i</i> o	on the catalog	Specifications of project
	conditions of the project chiller [-]		cniller(s) prepared for the	
				quotation or factory acceptance
<i>T</i>	Output cooling	water tempor	ature of project	Specifications of project
+ cooling–out,i	chiller <i>i</i> set on the catalog conditions of the		chiller(s) prepared for the	
	project chiller [degree Celsius]			quotation or factory acceptance

		test data by manufacturer
T _{chilled-out,i}	Output chilled water temperature of project	Specifications of project
	chiller <i>i</i> set on the catalog conditions of the	chiller(s) prepared for the
	project chiller [degree Celsius]	quotation or factory acceptance
		test data by manufacturer