JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Viet Nam	
Name of the methodology proponents	Sapporo Breweries Limited	
submitting this form		
Sectoral scope(s) to which the Proposed	d 3. Energy Demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introduction of High-	
version number	efficiency Inverter Type Multi-Stage Oil-Free	
	Air Compressor, Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	03/09/2019	

History of the proposed methodology

Version	Date	Contents revised
01.0	03/09/2019	First Edition

A. Title of the methodology

Energy Saving by Introduction of High-efficiency Inverter Type Multi-Stage Oil-Free Air Compressor, Version 01.0

B. Terms and definitions

Terms	Definitions	
Inverter type multi-stage oil-	An inverter type multi-stage oil-free air compressor is a	
free air compressor	compressor which contains inverter, an apparatus to control	
	the speed of the compressor motor, and which has more than	
	one compression stages, and also a compressor without using	
	lubricating oil to compress air, nitrogen or inert gases to	
	make the pressure of gas higher than that of the inlet.	
Specific conditions	The specific conditions for this methodology are defined as	
	below, following ISO 1217:2009.	
	Ambient temperature = 20 degrees Celsius,	
	Ambient pressure = 0 MPa (Gauge pressure*),	
	Relative humidity $= 0\%$,	
	Cooling water/air = 20 degrees Celsius,	
	Effective working pressure at discharge valve = 0.7 MPa (Gauge pressure).	
	*Note) Gauge pressure is the difference between absolute	
	pressure and atmospheric pressure. Gauge pressure is a	
	relative pressure that sets the atmospheric pressure as zero,	
	against absolute pressure that sets the vacuum state as zero.	
Free air delivery (FAD)	The actual quantity of compressed air converted to the inlet	
	conditions of the compressor. The unit is m ³ /min.	
Specific power (SP)	Specific power is an indicator of efficiency of air compressor,	
	calculated with electric motor power (nominal output power)	
	[kW] and free air delivery [m ³ /min].	
	$SP = \frac{Motor power \ [kW]}{FAD \ [m^3/min]}$	

C. Summary of the methodology

Items	Summary		
GHG emission reduction	High efficiency inverter type multi-stage oil-free air		
measures	compressor(s) is introduced to save energy, which leads to		
	GHG emission reductions. Inverter contributes to save power		
	consumption through frequently controlling output based on		
	operating status of related machines. In multi-stage compressor,		
	thermal energy of compressed air can be decreased by heat		
	exchange during the interval of each compression stage, it leads		
	to energy saving.		
Calculation of reference	Reference emissions are GHG emissions from using reference		
emissions	air compressor, calculated with power consumption of project		
	air compressor, specific power (SP) of reference/project air		
	compressors and CO ₂ emission factor for electricity consumed.		
Calculation of project	Project emissions are GHG emissions from using project air		
emissions	compressor, calculated with power consumption of project air		
	compressor and CO ₂ emission factor for electricity consumed.		
Monitoring parameters	Power consumption of project air compressor		
	• The amount of fuel consumed and the amount of electricity		
	generated by captive power, where applicable.		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project air compressor is an inverter type multi-stage oil-free air compressor
	with an electric motor power of 37kW, 55kW, 75kW, 100kW, or 160kW.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by project air compressor	CO ₂	
Project emissions		

Emission sources	GHG types
Power consumption by reference air compressor	CO_2

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project air compressor, specific power (SP) for reference/project air compressors, and CO₂ emission factor for electricity consumed.

SP of reference air compressor is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The most efficient value is selected for each motor power of air compressors from the collected SP values available in Vietnamese market and determined as the reference SP.
- 2. The value of SP is defined as $SP_{RE,sc,i}$ described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (SP_{RE,sc,i} \div SP_{PJ,sc,i}) \times EF_{elec} \}$$

 $\begin{aligned} & \operatorname{RE}_{p} & : \operatorname{Reference\ emissions\ during\ the\ period\ p\ [tCO_{2}/p]} \\ & \operatorname{EC}_{PJ,i,p} & : \operatorname{Power\ consumption\ of\ project\ air\ compressor\ i\ during\ the\ period\ p\ [MWh/p]} \\ & \operatorname{SP}_{PJ,sc,i} : \operatorname{SP\ of\ project\ air\ compressor\ i\ calculated\ under\ the\ specific\ conditions\ [kW\cdotmin/m^{3}]} \\ & \operatorname{SP}_{RE,sc,i} : \operatorname{SP\ of\ reference\ air\ compressor\ i\ under\ the\ specific\ conditions\ [kW\cdotmin/m^{3}]} \\ & \operatorname{EF}_{elec} & : \operatorname{CO}_{2}\ emission\ factor\ for\ consumed\ electricity\ [tCO_{2}/MWh]} \end{aligned}$

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project air compressor *i* during the period *p* [MWh/p] $EF_{elec} \quad : CO_2 \ emission \ factor \ for \ consumed \ electricity \ [tCO_2/MWh]$

H. Calculation of emissions reductions

	$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$
ER_p	: Emission reductions during the period p [tCO ₂ /p]
REp	: Reference emissions during the period p [tCO ₂ /p]
PE_p	: Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		Ministry of Natural Resources
	When project air compressor(s) consume only	and Environment of Vietnam
	grid electricity or captive electricity generated	(MONRE), Vietnamese DNA
	by fossil fuel, the project participant applies	for CDM unless otherwise
	the CO ₂ emission factor respectively.	instructed by the Joint
		Committee.
	When project air compressor(s) may consume	
	all or two of the three electricity types (grid,	[Captive electricity]
	captive by fossil fuel, and captive by	For the option a)
	renewable energy), the project participant	Specification of the captive
	applies the CO ₂ emission factor with lower	power generation system
	value.	provided by the manufacturer
		$(\eta_{elec,CG} [\%]).$
	[CO ₂ emission factor]	CO ₂ emission factor for the
	(1) For grid electricity	fossil fuel type used in the
	The most recent value available from the	captive power generation
	source stated in this table at the time of	system (EF _{fuel,CG} [tCO ₂ /GJ])
	validation	
		For the option b)

(2) For captive electricity	Generated and supplied
If the amount of electricity generated by	electricity by the captive power
renewable energy sources estimated from	generation system (EG _{PJ,CG,p}
their generation capacities is equal to or less	[MWh/p]).
than half of the total electricity consumption	Fuel amount consumed by the
at the project site, the captive CO_2 emission	captive power generation
factor is determined from the following	system (FC _{PJ,CG,p} [mass or
options using the data of fossil fuel generation	volume/p]).
only by option (a) or option (b).	Net calorific value (NCV $_{\rm fuel,CG}$
If the amount is more than half, the CO_2	[GJ/mass or volume]) and CO ₂
emission factor is determined by option (b)	emission factor (EF _{fuel,CG}
using total of the amount of electricity	[tCO ₂ /GJ]) of the fuel
generated by both fossil fuel and renewable	consumed by the captive power
sources for EG _{PJ,CG,p} .	generation system in order of
	preference:
Option (a) Calculated from its power	1) values provided by the fuel
generation efficiency ($\eta_{elec,CG}$ [%]) obtained	supplier;
from manufacturer's specification	2) measurement by the project
The power generation efficiency based on	participants;
lower heating value (LHV) of the captive	3) regional or national default
power generation system from the	values;
manufacturer's specification is applied;	4) IPCC default values
$FF_{\text{stars}} = 3.6 \times \frac{100}{2} \times FF_{\text{stars}}$	provided in tables 1.2 and 1.4
η _{elec,CG}	of Ch.1 Vol.2 of 2006 IPCC
	Guidelines on National GHG
Option (b) Calculated from measured data	Inventories. Lower value is
The power generation efficiency calculated	applied.
from monitored data of the amount of fuel	
input for power generation $(FC_{\text{PJ},\text{CG},p})$ and the	[Captive electricity with diesel
amount of electricity generated $(EG_{PJ,CG,p})$	fuel]
during the monitoring period p is applied.	CDM approved small scale
$FC_{PJ,CG,p}$ includes the amount of fossil fuel	methodology: AMS-I.A.
input only but does not include renewable	
energy. The amount of electricity generated	[Captive electricity with
includes both by fossil fuel and renewable	natural gas]
energy when necessary. The measurement is	2006 IPCC Guidelines on
conducted with the monitoring equipment to	National GHG Inventories for

	which calibration certificate is issued by an	the source of EF of natural gas.
	entity accredited under national/international	CDM Methodological tool
	standards;	"Determining the baseline
	$EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$	efficiency of thermal or electric
	$\times \frac{1}{\text{EG}_{\text{PLCG},\text{p}}}$	energy generation systems version02.0" for the default
	Where:	efficiency for off-grid power
	NCV _{fuel cc} : Net calorific value of fuel	nlants
	consumed by the captive power generation	piulits.
	system [GI/mass or volume]	
	system [es/mass of volume]	
	Note:	
	In case the captive electricity generation	
	system meets all of the following conditions,	
	the value in the following table may be	
	applied to EF _{elec} depending on the consumed	
	fuel type.	
	• The system is non-renewable generation	
	system	
	• Electricity generation capacity of the	
	system is less than or equal to 15 MW	
	fuel type Diesel fuel Natural gas	
	EF _{elec} 0.8 *1 0.46 *2	
	i	
	*1 The most recent value at the time of	
	validation is applied.	
	*2 The value is calculated with the equation	
	in the option (a) above. The lower value of	
	default effective CO ₂ emission factor for	
	natural gas (0.0543 tCO ₂ /GJ), and the most	
	efficient value of default efficiency for off-	
	grid gas turbine systems (42%) are applied.	
SP _{RE,sc,i}	The SP of the reference air compressor i for	Specifications of project air
	each motor power is set as a default value in	compressor <i>i</i> prepared for the

	this methodology as shown in the table below.	quotation or factory acceptance test data by manufacturer.
	Motor Power [kW] Reference SP	
	37 6.80	The default SP value is derived
	55 5.98	from the result of survey on SP
	75 5.63	of inverter type multi-stage oil-
	100 5.28	free air compressors from
	160 5.32	manufacturers that have high
		market share in Vietnam.
	It is noted that the SP value is calculated	
	under the specific conditions.	The $SP_{RE,sc,i}$ is revised if
		necessary from survey result
		which is conducted by JC or
		project participants every three
		years.
SP _{PJ,i}	SP of project air compressor <i>i</i> under the	Specifications of project air
	project specific conditions.	compressor <i>i</i> prepared for the
		quotation or factory acceptance
		test data by manufacturer.
$SP_{PJ,sc,i}$	SP of project air compressor <i>i</i> under the	[Parameter <i>m_i</i>]
	specific conditions is calculated by the	Catalogues or specifications of
	following equation:	project air compressor i
	$SP_{PI,cc,i} = SP_{PI,i} \times \frac{T_{s,PJ,Sc,i}}{m_i k} \times \left[\left(\frac{P_{d,PJ,Sc,i}}{m_i k} \right)^{\frac{K-1}{m_i k}} - 1 \right]$	[Other parameters]
	$\begin{bmatrix} P_{s,PJ,sc,i} & T_{s,PJ,i} \\ \end{bmatrix}$	Specifications of project air
	$\div \left \left(\frac{P_{d,PJ,i} + 0.101}{m_i k} \right) \right ^{\frac{\kappa - 1}{m_i k}} - 1 \right $	compressor <i>i</i> prepared for the
	$\left[\left(P_{s,PJ,i} \right) \right]$	quotation or factory acceptance
		test data by manufacturer.
	k: Heat capacity ratio (Dried Air) = 1.4	
	m_i : Number of compression stages of	
	project air compressor <i>i</i>	
	$P_{s,PJ,i}$: Suction pressure of project air	
	compressor <i>i</i> under the project specific	
	conditions [MPa(abs)] (Default value is set	
	at atmospheric pressure = 0.101[MPa(abs)])	
	$P_{s,PJ,sc,i}$: Suction pressure of project air	
	compressor <i>i</i> under the specific conditions	

[MPa(abs)] (Default value is set at	
atmospheric pressure = 0.101[MPa(abs)])	
$T_{s,PJ,i}$: Suction temperature of project air	
compressor <i>i</i> under the project specific	
conditions [K] (Value from the product	
catalogue or manufacturer's specification)	
$T_{s,PJ,sc,i}$: Suction temperature of project air	
compressor <i>i</i> under the specific conditions	
[K] (Default value is set at 293.0[K])	
$P_{d,PJ,i}$: Discharge pressure of project air	
compressor <i>i</i> under the project specific	
conditions [MPa(Gauge pressure)] (Value	
from the product catalogue or	
manufacturer's specification)	
$P_{d,PJ,sc,i}$: Discharge pressure of project air	
compressor <i>i</i> under the specific conditions	
[MPa(abs)] (= 0.101[MPa(abs)] + 0.7	
[MPa(Gauge pressure)] = 0.801[MPa(abs)])	