JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Viet Nam
Name of the methodology proponents	Sapporo Breweries Limited
submitting this form	
Sectoral scope(s) to which the Proposed	3. Energy Demand
Methodology applies	
Title of the proposed methodology, and	Energy Saving by Introduction of High
version number	Efficiency Boiler, ver.01.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	⊠Additional information
Date of completion	03/09/2019

History of the proposed methodology

Version	Date	Contents revised
01.0	03/09/2019	First Edition

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Boiler, ver.01.0

B. Terms and definitions

Terms	Definitions
Boiler efficiency	Boiler efficiency is the ratio of the total absorption heating
	value of outlet steam/hot water to the total heating value
	provided by a fuel.

C. Summary of the methodology

Items	Summary
GHG emission reduction	This methodology involves the installation of high efficiency
measures	boiler. Compared with the reference boiler, the boilers to be
	installed have higher boiler efficiency and less fuel
	consumption. This methodology may also involve the fuel
	switching from the fuel with higher GHG emission factor to one
	with lower GHG emission factor. Thus those measures above
	will contribute to the GHG emission reductions.
Calculation of reference	Reference emissions are calculated from the amount of fuel
emissions	consumption of the project boiler, net calorific value of fuel
	used by the project boiler, CO2 emission factor of fuel
	consumed by the reference boiler, and the ratio of efficiency of
	the project/reference boiler. Conservative estimation of
	reference emissions is made by selecting lower CO ₂ emission
	factor from IPCC guideline with regard to the fuel used in the
	reference boiler.
Calculation of project	Project emissions are calculated from monitored fuel
emissions	consumption and emission factor of the fuel of the project
	boiler.
Monitoring parameters	- The amount of fuel consumption

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The boiler efficiency of the project boiler is higher than that of the reference
	boiler.
Criterion 2	In case there is fuel switching, it can be demonstrated that the change of fuel
	from the fuel with higher GHG emissions factor to one with lower GHG
	emission factor takes place.

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG		
Fuel consumption by reference boiler	CO_2	
Project emissions		
Emission sources	GHG types	
Fuel consumption by project boiler	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on the efficiency of project boiler and reference boiler.

In Vietnam, various types of fuel including coal, oil and natural gas are used for boilers. The efficiency of the boiler currently dominant in the Vietnamese market is conservatively set as 92%. This default value is the efficiency of the boiler whose fuel is natural gas, as the efficiency of natural gas boiler is higher than those of coal and oil boilers.

The efficiency of reference boiler, which is applied to calculate reference emissions in this methodology, is the efficiency of the boiler currently dominant in the Vietnamese market (set as default valued of 92%) or the existing boiler to be replaced, whichever is the higher. This ensures conservativeness of calculation, and hence net emission reductions.

F.2. Calculation of reference emissions

$$RE_p = \sum_i \sum_j \left(FC_{PJ,i,j,p} \times NCV_{PJ,i,j} \times EF_{RE} \times \frac{\eta_{PJ,i}}{\eta_{RE}} \right)$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $FC_{PI,i,j,p}$: The amount of fuel consumption of project boiler i for the fuel type j during the

period *p* [mass or volume unit/p]

 $NCV_{PI.i.i}$: Net calorific value of fuel consumed by project boiler i for the fuel type j

[GJ/mass or volume unit]

*EF*_{RE} : CO₂ emission factor of fuel consumed by reference boiler [tCO₂/GJ]

 $\eta_{PJ,i}$: Boiler efficiency of project boiler i [-] η_{RE} : Boiler efficiency of reference boiler [-]

G. Calculation of project emissions

$$PE_p = \sum_{i} \sum_{j} (FC_{PJ,i,j,p} \times NCV_{PJ,i,j} \times EF_{PJ,i,j})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $FC_{PJ,i,j,p}$: The amount of fuel consumption of project boiler i for the fuel type j during the

period *p* [mass or volume unit/p]

 $NCV_{PLi,i}$: Net calorific value of fuel consumed by project boiler i for the fuel type j

[GJ/mass or volume unit]

 $EF_{PI.i.i}$: CO₂ emission factor of fuel consumed by project boiler i for the fuel type j

[tCO₂/GJ]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_p : Emission reductions during the period p [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$NCV_{PJ,i,j}$	Net calorific value of fuel	In the order of preference:
	consumed by project boiler i for	a) values provided by fuel supplier;
	the fuel type <i>j</i> [GJ/mass or	b) measurement by the project
	volume unit]	participants;
		c) regional or national default values; or
		d) IPCC default values provided in table
		1.2 of Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Lower value is applied.
$EF_{PJ,i,j}$	CO ₂ emission factor of fuel	In the order of preference:
	consumed by the project boiler i	a) values provided by fuel supplier;
	for the fuel type <i>j</i> [tCO ₂ /GJ]	b) measurement by the project
		participants;
		c) regional or national default values; or
		d) IPCC default values provided in table
		1.4 of Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Upper value is applied.
EF_{RE}	CO ₂ emission factor of fuel	In the order of preference:
	consumed by the reference boiler	a) values provided by fuel supplier;
	[tCO ₂ /GJ]	b) measurement by the project
	In case the project boiler replaces	participants;
	the existing boiler, CO ₂ emission	c) regional or national default values; or
	factor of the fuel consumed by the	d) IPCC default values provided in table
	existing or planned boiler is	1.4 of Ch.1 Vol.2 of 2006 IPCC
	applied. Otherwise, the value of	Guidelines on National GHG
	the fuel used by the project boiler	Inventories. Lower value is applied.
	<i>i</i> is applied.	
	In case the fuel for the reference	
	boiler and for the project boiler	
	are the same, the same value as	
	EF_{PJ} is applied.	
$\eta_{PJ,i}$	Boiler efficiency of project boiler	Specifications of the project boiler or
	<i>i</i> [-]	factory test data of the project boiler by

		the manufacturer
η_{RE}	Boiler efficiency of reference	The default value is derived from the
	boiler [-]	result of survey on boiler efficiency
	The boiler efficiency of the boiler	In case the reference boiler is the boiler
	currently dominant in the	currently dominated in Vietnamese
	Vietnamese market or the existing	market: value of default efficiency of
	boiler to be replaced, whichever is	thermal applications by new natural gas
	the higher.	fired boiler, provided in Table 1 of
	The boiler efficiency of boiler	appendix of CDM methodological tool
	currently dominated in	"TOOL09: Determining the baseline
	Vietnamese market is set as 0.92.	efficiency of thermal or electric energy
		generation systems ver02.0"
		In case the reference boiler is the existing
		boiler to be replaced: specifications of
		the reference boiler