Joint Crediting Mechanism Approved Methodology VN_AM014 "Introduction of energy efficient wire stranding machines to automotive wire production factory"

A. Title of the methodology

Introduction of energy efficient wire stranding machines to automotive wire production factory, Version 01.0

B. Terms and definitions

Terms	Definitions
wire stranding machine	A machine which twists metal wires together with other
	ones for bundling using a bow by electric motor and winds
	wires to the bobbin.

C. Summary of the methodology

Items	Summary
GHG emission reduction	This methodology applies to the project that aims for saving
measures	energy by introducing energy efficient wire stranding machines
	in Vietnam.
Calculation of reference	GHG emissions associated with electricity consumption of
emissions	reference wire stranding machines are calculated based on the
	monitored electricity consumption of project wire stranding
	machines, electricity consumption ratio per production unit
	(hereinafter referred to as "ECR"), and the CO_2 emission factor
	for consumed electricity.
Calculation of project	GHG emissions associated with electricity consumption of
emissions	project wire stranding machines are calculated based on the
	monitored electricity consumption of project wire stranding
	machines and the CO ₂ emission factor for consumed electricity.
Monitoring parameters	• Electricity consumption of project wire stranding machines

•	The amount of fuel consumption and the amount of
	electricity generated by captive power, where applicable

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Wire stranding machine(s) with energy-saving measures such as reinforced
	frames, friction reduction mechanism, energy efficient bow, and lightweight
	parts is newly installed or installed to replace existing wire stranding
	machine(s).
Criterion 2	Flange diameter of bobbin of a wire stranding machine installed in the project
	is 560mm.
Criterion 3	Total motor capacity of a project wire stranding machine installed in the
	project is equal to or less than 11.0 [kW].

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by reference wire stranding machines	CO ₂	
Project emissions		
Emission sources	GHG types	
Electricity consumption by project wire stranding machines	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with electricity consumption of project wire stranding machines, electricity consumption ratio per production unit (ECR), and CO₂ emission factor for electricity consumed.

ECR is provided as a default value in this methodology and is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- 1. The wire stranding machine with higher energy efficiency currently available in the Vietnamese market is determined as a reference wire stranding machine.
- Electricity consumption per production unit (EPU) of twisted wire by wire stranding machine, which is expressed in [kWh/km] varies depending on the twisting speed. Therefore, ECR is uniquely determined as the minimum ECR value in the range of the assumed operational twisting speed.

F.2. Calculation of reference emissions

	$RE_{p} = \sum_{i} (EC_{PJ,i,p} \times ECR) \times EF_{elec}$
RE_p	: Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$: Electricity consumption of project wire stranding machine i during the period p
	[MWh/p]
ECR	: Electricity consumption ratio per production unit [-]
EF _{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Identification number of wire stranding machines [-]

G. Calculation of project emissions

$$PE_p = \sum_i EC_{PJ,i} \times EF_{elec}$$

 $\begin{array}{ll} PE_p & : \mbox{Project emissions during the period } p \ [tCO_2/p] \\ EC_{PJ,i,p} & : \mbox{Electricity consumption of project wire stranding machine } i \ during the period } p \\ & \ [MWh/p] \\ EF_{elec} & : \mbox{CO}_2 \ emission \ factor \ for \ consumed \ electricity \ [tCO_2/MWh] \\ i & : \ Identification \ number \ of \ wire \ stranding \ machines \ [-] \end{array}$

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

 ER_p : Emission reductions during the period p [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor of consumed electricity.	[Grid electricity]
		Ministry of Natural Resources
	When project wire stranding machines	and Environment of Vietnam
	consume only grid electricity or captive	(MONRE), Vietnamese DNA
	electricity, the project participant applies the	for CDM unless otherwise
	CO ₂ emission factor respectively.	instructed by the Joint
		Committee.
	When project wire stranding machines may	
	consume both grid electricity and captive	[Captive electricity]
	electricity, the project participant applies the	For the option a)
	CO ₂ emission factor with lower value.	Specification of the captive
		power generation system
	[CO ₂ emission factor]	provided by the manufacturer
	For grid electricity: The most recent value	$(\eta_{elec,CG} [\%]).$
	available from the source stated in this table at	CO ₂ emission factor of the
	the time of validation	fossil fuel type used in the
		captive power generation
	For captive electricity, it is determined based	system (EF _{fuel,CG} [tCO ₂ /GJ])
	on the following options:	
		For the option b)

and

electricity by the captive power

supplied

Generated

a) Calculated from its power generation efficiency ($\eta_{elec,CG}$ [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$\mathrm{EF}_{\mathrm{elec}} = 3.6 \times \frac{100}{\eta_{\mathrm{elec,CG}}} \times \mathrm{EF}_{\mathrm{fuel,CG}}$$

100

b) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation (FC_{PJ,CG,p}) and the amount of electricity generated (EG_{PJ,CG,p}) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

 $EF_{elec} = FC_{PI,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$ $\times \frac{1}{\mathrm{EG}_{\mathrm{PJ,CG,p}}}$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

The system is non-renewable generation system

generation system (EG_{PJ,CG,p} [MWh/p]). Fuel amount consumed by the captive power generation (FC_{PJ,CG,p} system [mass or volume/p]). Net calorific value (NCV_{fuel,CG} [GJ/mass or volume]) and CO₂ emission factor (EF_{fuel,CG} $[tCO_2/GJ])$ of fuel the consumed by the captive power generation system in order of preference: 1) values provided by the fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 1.4

of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel]

CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for

	• Electricity generation capacity of the system is less than or equal to 15 MW			the source of EF of natural gas. CDM Methodological tool "Determining the baseline
	fuel type	Diesel fuel	Natural gas	efficiency of thermal or electric energy generation systems
	EF _{elec}	0.8_{*1}	0.46 *2	version02.0" for the default efficiency for off-grid power
	the option a) about the option a) about CO_2 effective CO_2 effective CO_2/G_2 of default efficient of the option of the	blied. calculated w ove. The low mission fact J), and the m iency for of	the time of ith the equation in er value of default or for natural gas ost efficient value f-grid gas turbine	plants.
ECR	systems (42%) are applied.Electricity consumption ratio per production unit.ECR is derived as a ratio of electricity consumption per production unit of reference wire stranding machine to that of project machine. $ECR = EPU_{RE}/EPU_{PJ}$ Where; EPU_{RE} : Electricity consumption per production unit of reference wire stranding machine [kWh/km] EPU_{PJ} : Electricity consumption per production unit of project wire stranding machine [kWh/km] EPU_{PJ} : Electricity consumption per production unit of project wire stranding machine [kWh/km]The default value of ECR is set at the minimum value in a conservative manner, as follows;			Survey results on <i>EPU_{RE}</i> / <i>EPU_{PJ}</i> of wire stranding machines that have high market share in Vietnam. The default values should be revised if necessary.

History of the document

Version	Date	Contents revised
01.0	29 August 2018	Decision by the Joint Committee Initial approval.