Joint Crediting Mechanism Approved Methodology VN_AM013 "Energy saving by introduction of high-efficiency double suction volute pumps in water supply system"

A. Title of the methodology

Energy saving by introduction of high-efficiency double suction volute pumps in water supply system, Version 01.0

B. Terms and definitions

Terms	Definitions			
Double suction volute pump	A pump with a double-suction impeller which has a double			
	action flow path in upstream and a double volute flow path			
	in downstream.			
Pump efficiency	Ratio of water horsepower output from the pump to the shaft			
	horsepower input for the pump, which is expressed in			
	percentage (%) and is calculated by dividing water			
	horsepower output (kW) by shaft horsepower input (kW).			

C. Summary of the methodology

Items		Summary					
GHG emission	reduction	High-efficiency double suction volute pump is introduced in					
measures		water supply system to save energy, which leads to GHG					
		emission reductions.					
Calculation of	reference	Reference emissions are GHG emissions from power					
emissions		consumption by reference pumps, calculated with the monitored					
		power consumption of project pumps, ratio of pump efficiency					
		of reference/project pumps and CO2 emission factor for					
	consumed electricity.						
Calculation of	project	Project emissions are GHG emissions from power consumption					
emissions		by project pumps, calculated with the monitored power					

	consumption of project pumps and CO ₂ emission factor for						
	consumed electricity.						
Monitoring parameters	• Electricity consumption of project pumps						
	• The amount of fuel consumption and the amount of						
	electricity generated by captive power, where applicable						

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Double suction volute pump(s) with efficiency of more than 80% at a condition
	for operational use is installed for water supply system at a water treatment plant.
Criterion 2	Project pump uses environmental friendly paints such as paints with 0.1% or less
	lead, cadmium and tar during the production process.

E. Emission Sources and GHG types

Reference emissions					
Emission sources	GHG types				
Electricity consumption by reference pumps	CO_2				
Project emissions					
Emission sources	GHG types				
Electricity consumption by project pumps	CO ₂				

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with the monitored power consumption of project pumps, ratio of pump efficiency of reference/project pumps and CO₂ emission factor for consumed electricity.

The pump efficiency of reference pump is conservatively set as a default value in the following manner to ensure the net emission reductions.

Pump efficiencies for high-efficiency double suction volute pump are determined in the Japanese Industrial Standard JIS B 8322 "Double suction volute pumps" based on the collected

data of high-efficiency double suction volute pumps actually marketed in Japan. Application of those pump efficiencies as default values for reference pumps in consideration of pump efficiency commonly observed in Viet Nam ensures conservativeness and the net emission reductions in this methodology.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (\eta_{PJ,i} \div \eta_{RE,i}) \} \times EF_{elec}$$

Where

RE_p	Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	Power consumption of project pump i during the period p [MWh/p]
$\eta_{PJ,i}$	Pump efficiency of project pump <i>i</i> at a condition for operational use [%]
$\eta_{RE,i}$	Pump efficiency of reference pump <i>i</i> [%]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	Identification number of pump [-]

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

Where

PE_p	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	Power consumption of project pump i during the period p [MWh/p]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	Identification number of pump [-]

H. Calculation of emissions reductions

	$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$					
Where						
ER_p	Emission reductions during the period p [tCO ₂ /p]					
RE_p	Reference emissions during the period p [tCO ₂ /p]					
PE_p	Project emissions during the period p [tCO ₂ /p]					

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter		Description of data				Source		
$\eta_{PJ,i}$	Pump efficiency of project pump <i>i</i> at a condition for operational use [%]				 Specifications of project pump <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer. 			
$\eta_{RE,i}$	Pump effic: $\eta_{RE,i}$ is set following t pump <i>i</i> . ("x	iency of re elected fro able in lin " in the tal	ference p om the d ne with the ble denote	lefar ne c es c	p <i>i</i> [%] ult val apacity apacity	ues of j per	in the project unit.)	Specifications of project pump <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer.
	Capacity (m ³ /min) x ≤ 2 2 $<$ x ≤ 3 3 $<$ x ≤ 4 4 $<$ x ≤ 5 $\eta_{RE,i}$ 70.5 73.0 74.0 74.5				<x≤5 74.5</x≤5 	The default values $\eta_{RE,i}$ are derived from the Japanese Industrial Standard JIS B 8322		
	Capacity (m ³ /min) $\eta_{RE,i}$	5 <x≤6 75.0</x≤6 	6 <x≤8 75.5</x≤8 	8<	cx≤10 76.0	10<	x≤15 76.5	"Double suction volute pumps". Revision of default values $\eta_{RE,i}$ should be considered if
	Capacity (m ³ /min) $\eta_{RE,i}$	15 <x≤20 77.0</x≤20 	0 20 <x≤ 0 78</x≤ 	30 3.0	30 <x<< td=""><td>≤40 78.5</td><td></td><td>JIS B 8322 is revised.</td></x<<>	≤40 78.5		JIS B 8322 is revised.
	Capacity 40 <x≤50 50<x≤60="" 60<x≤70<="" td=""><td></td><td></td></x≤50>							

	(m ³ /min)								
	$\eta_{RE,i}$	79.0	79.5	80.0					
EF _{elec}	CO ₂ emissi	on factor of	consumed	electricity.		[Grid electricity]			
						Ministry of Natural			
	When proje	ect pumps o	consume on	ly grid elec	etricity	Resources and			
	or captive e	electricity, t	he project j	participant a	applies	Environment of Vietnam			
	the CO ₂ em	ission facto	r respective	ely.		(MONRE), Vietnamese			
						DNA for CDM unless			
	When proj	ject pumps	may con	nsume both	n grid	otherwise instructed by			
	electricity	and capti	ve electric	city, the p	project	the Joint Committee.			
	participant	applies the	e CO ₂ emi	ssion factor	r with				
	lower value	.				[Captive electricity]			
						For the option a)			
	[CO ₂ emiss	ion factor]				Specification of the			
	For grid ele	ectricity: Th	e most rece	ent value ava	ailable	captive power generation			
	from the source stated in this table at the time of				ime of	system provided by the			
	validation					manufacturer $(\eta_{elec,CG})$			
						[%]).			
	For captive electricity, it is determined based on the				on the	CO ₂ emission factor of			
	following o	ptions:				the fossil fuel type used in			
						the captive power			
	a) Calculate	ed from its p	ower gener	ration efficie	ency	generation system			
	$(\eta_{elec,CG} [\%])$) obtained f	rom manuf	acturer's		$(EF_{fuel,CG} [tCO_2/GJ])$			
	specificatio	n							
	The power	generation of	efficiency b	ased on low	ver	For the option b)			
	heating valu	ue (LHV) of	f the captive	e power		Generated and supplied			
	generation system from the manufacturer's					electricity by the captive			
	specificatio	n is applied		power generation system					
	$EF_{elec} = 3.6 \times \frac{100}{2} \times EF_{fuel CG}$					$(EG_{PJ,CG,p} [MWh/p]).$			
	η _{elec,CG}					Fuel amount consumed by			
						the captive power			
	b) Calculate	ed from mea	sured data			generation system			
	The power	generation e	efficiency c	alculated fro	om	(FC _{PJ,CG,p} [mass or			
	monitored of	lata of the a	mount of fu	al input for		volume/p]).			
	power gene	ration (FC _{P.}	f	Net calorific value					

electricity generated $(EG_{PJ,CG,p})$ during the monitoring period *p* is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

 $EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$

$$\frac{1}{\text{EG}_{\text{PJ,CG,p}}}$$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	0.8_{*1}	0.46 *2

*1 The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO_2 emission factor for natural gas (0.0543 tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.

(NCV_{fuel.CG} [GJ/mass or CO_2 volume]) and emission factor (EF_{fuel,CG} [tCO₂/GJ]) of the fuel consumed by the captive power generation system in order of preference: 1) values provided by the fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel] CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.

CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy

	Ę	generatio	n sy	systems	
	•	version02	2.0" for	the	
		default	efficiency	for	
		off-grid p	ower plant	s.	

History of the document

Version	Date	Contents revised
01.0	29 August 2018	Decision by the Joint Committee Initial approval.