JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Energy saving by installation of evaporator with mechanical vapor recompression and highefficiency chiller.

A.2. General description of project and applied technologies and/or measures

A high-efficiency centrifugal chiller and an evaporator with mechanical vapor recompression are installed to reduce CO2 emissions in the amino acid manufacturing plant.

The project chiller, whose COP is higher than a reference chiller, contributes to reduce the electricity consumption.

Mechanical vapor recompression is introduced in vapor line and vapor can be recovered as Steam. Although electricity consumption by the re-compressor is increased, steam consumption can be reduced, which leads to reduction of total CO2 emissions.

A.3. Location of project, including coordinates

Country	Kingdom of Thailand		
Region/State/Province etc.:	Rayong		
City/Town/Community etc:	399 IRPC Industrial Zone, Moo 1, Choengnoen District		
Latitude, longitude	12°41'00.8" N 101°19'14.8"E		

A.4. Name of project participants

The Kingdom of Thailand	THAI KYOWA BIOTECHNOLOGIES CO., LTD
Japan	KYOWA HAKKO BIO CO., LTD.

A.5. Duration

Starting date of project operation	1/1/2019
Expected operational lifetime of project	8 years
Type and duration of crediting period	Fixed crediting period
Starting date of crediting period (input the information	1/1/2019
when requesting a renewal of crediting period)	

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan

through the Financing Programme for JCM Model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	TH_AM005
Version number	Ver3.0
Selected approved methodology No.	TH_AM012
Version number	Ver1.0

B.2. Explanation of how the project meets eligibility criteria of the approved methodology [TH_AM005]

Eligibility	Descript	ions specifi	ied in the meth	nodology	Project information
criteria					
Criterion 1	Project chiller with a capacity with a Capacit	A non-inverter type centrifugal chiller (RTBF150) manufactured by EBARA (THILAND) LIMITED., whose capacity is 1,500 USRt, is installed for this project.			
Criterion 2	COP for project chiller i calculated under the standardizing temperature conditions*1 (COP _{PJ,tc,i}) is more than the threshold COP values set in the table below. ("x" in the table represents cooling capacity per unit.)				COP for the project chiller calculated under the standardizing temperature conditions is 6.4 with a cooling
	Cooling capacity per unit [USRt]	x≤600	600 <x≤800< td=""><td>800<x≤1600< td=""><td>capacity of 1,500 USRt, which is more than the threshold COP value set in this</td></x≤1600<></td></x≤800<>	800 <x≤1600< td=""><td>capacity of 1,500 USRt, which is more than the threshold COP value set in this</td></x≤1600<>	capacity of 1,500 USRt, which is more than the threshold COP value set in this
	Threshold COP value	5.90	6.00	6.08	criterion.
			•	he temperature $\mathrm{COP}_{\mathrm{PJ},i}$) from the	

	project specific	conditions to the standardizing	
	conditions. COl	P _{PJ,i} is derived from specifications	
	prepared for the	quotation or factory acceptance test data	
	by manufacturer.		
	[equation to calcu	ılate COP _{PJ,tc,i}]	
	$COP_{PJ,tc,i} = CC$	$P_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i})]$	
		$+ TD_{chilled} + TD_{cooling}) \div (37 - 7$	
		$+ TD_{chilled} + TD_{cooling})]$	
	$COP_{PJ,tc,i}$: COP of project chiller i calculated	
		under the standardizing temperature	
		conditions* [-]	
	$COP_{PJ,i}$: COP of project chiller i under the	
		project specific conditions [-]	
	$T_{cooling-out,i}$: Output cooling water temperature of	
		project chiller i set under the project	
		specific conditions [degree Celsius]	
	T _{chilled-out,i}	: Output chilled water temperature of	
		project chiller i set under the project	
		specific conditions [degree Celsius]	
	$TD_{cooling}$: Temperature difference between	
		condensing temperature of refrigerant	
		and output cooling water temperature	
		1.5 degree Celsius set as a default	
		value [degree Celsius]	
	TD _{chilled}	: Temperature difference between	
		evaporating temperature of refrigerant	
		and output chilled water temperature,	
		1.5 degree Celsius set as a default	
		value [degree Celsius]	
	*1 . Th	:	
	"1: The standard calculate COP _{PJ.tc}	izing temperature conditions to	
	Chilled w	ater: output 7 degrees Celsius	
	Cooling v	input 12 degrees Celsius vater: 37 degrees Celsius	
	Cooming v	input 37 degrees Celsius	
Criterion 3	Periodical check	is planned at least one (1) time annually.	Periodical check is
			annually planned by

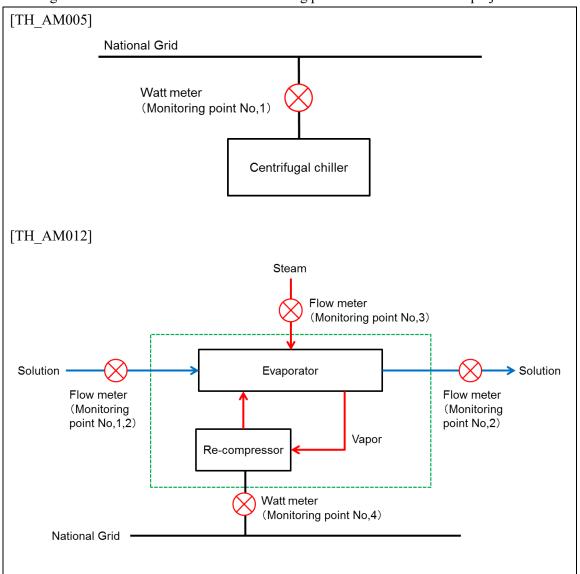
		the manufacturer.
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is zero.	The refrigerant used for project chiller is HFC-245fa whose ODP is zero.
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is prepared. In the case of replacing the existing chiller with the project chiller, a plan for prevention of releasing refrigerant used in the existing chiller to the air (e.g. re-use of the equipment) is prepared. Execution of this plan is checked at the time of verification, in order to confirm that refrigerant used for the existing one replaced by the project is prevented from being released to the air.	The project chiller has been newly installed at the project site. Measures to prevent releasing refrigerant used in the project chiller to the air will be taken when it is used and replaced.

[TH_AM012]

Eligibility	Descriptions specified in the	Project information		
criteria	methodology			
Criterion 1	The project installs evaporator(s) which applies mechanical vapor recompression.			

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project $[TH_AM005]$


Reference emissions			
Emission sources GHG type			
Power consumption by reference chiller	CO_2		
Project emissions			
Emission sources	GHG type		
Power consumption by project chiller	CO_2		

[TH_AM012]

Reference emissions			
Emission sources	GHG type		
Consumption of steam supplied from steam generator by reference evaporator	CO ₂		

Project emissions			
Emission sources	GHG type		
Consumption of steam supplied from steam generator by project evaporator	CO ₂		
Electricity consumption by project evaporator	CO_2		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

The data monitored and required for verification and issuance are kept and archived for two years after the final issuance of credits.

C.3. Estimated emissions reductions in each year

	Year	Estimated	Reference	Estimated	Project	Estimated	Emission
--	------	-----------	-----------	-----------	---------	-----------	----------

	emissions (tCO ₂ eq)	Emissions (tCO ₂ eq)	Reductions (tCO ₂ eq)
2013	-	•	-
2014	-	1	-
2015	-	ı	-
2016	-	ı	-
2017	-	-	-
2018	-	1	-
2019	N/A	N/A	1,518
2020	N/A	N/A	1,518
2021	N/A	N/A	1,518
2022	N/A	N/A	1,518
2023	N/A	N/A	1,518
2024	N/A	N/A	1,518
2025	N/A	N/A	1,518
2026	N/A	N/A	1,518
2027	-	-	-
2028	-	-	-
2029	-	-	-
2030	-	-	-
Total (tCo	O_2 e)		12,144

D. Environmental impact assessment	
Legal requirement of environmental impact assessment for	No
the proposed project	

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

In order to collect comments from stakeholders, a local stakeholder consultation has been conducted on 9 May 2018 at the plant where the project was implemented in Rayong Prefecture, Thailand. The schedule and participants of the meetings are provided below.

Date: 9 May 2018

Venue: THAI KYOWA BIOTECHNOLOGIES CO., LTD.

Address: 399 IRPC Industrial Zone, Moo 1, Tambon Choengnoen, Amphur Muang Rayong, Rayong 21000, Thailand

Agenda:

- 1. Opening Remarks by THAI KYOWA BIOTECHNOLOGIES CO., LTD.
- 2. Introduction about THAI KYOWA BIOTECHNOLOGIES CO., LTD.
- 3. Project Overview and introduced Technology and Facility by KYOWA HAKKO BIO CO. LTD.
- 4. Q&A
- 5. Site tour
- 6. Closing

After explanation about the proposed JCM project, questions and comments were solicited from the stakeholders. A summary of the comments received and consideration of those comments are provided in Section E.2. below.

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received
Manager,	Have both of the refrigerators been	Both refrigerators have been
Review and Monitoring	already installed?	installed.
Office, Thailand	How much is the actual amount of	Since the trial operation has been just
Greenhouse Gas	CO ₂ emissions reductions brought by	implemented, the actual amount of
Management	installing the refrigerators?	reductions is still unknown.
Organization (TGO),		It is scheduled to start actual
Ministry of		operation and monitoring from
Natural Resources and		October 2018.
Environment		No further action is needed.
	Have you taken measures against the	Refrigerant recovery was carried out
	leakage of refrigerant from the	by the contractor according to the
	existing refrigerators?	manufacturer's manual.
		No further action is needed.
	Are the emission reductions achieved	Yes.
	by reducing steam consumption and	The emission reductions will be
	electricity consumption?	achieved by the reduction of steam
	When will the methodology of vapor	consumptions and electricity
	recompression be completed?	consumptions.
		We anticipate that the methodology

		will be approved this year.
		No further action is needed.
	KYOWA HAKKO BIO CO. LTD.	There is no SBT goal specifically set
	has Science based targets (SBT).	for THAI KYOWA
	On the other hand, does THAI	BIOTECHNOLOGIES CO, LTD.
	KYOWA BIOTECHNOLOGIES	We are following 20% reduction goal
	CO, LTD. set SBT?	as a group goal.
		No further action is needed.
Technical	How much amount of the CO ₂	Emissions reductions by introducing
Officer, Approval and	emissions will be reduced by the	project refrigerators are calculated by
Monitoring	refrigerator and the other equipment?	the ratio of COP between project
Office, TGO	(For example, how much t-CO ₂ can	refrigerator and reference
160	be reduced per hour?)	refrigerator.
		COP of Project refrigerator is 6.4, on
		the other hand, that of reference
		refrigerator is 6.05.
		The accurate amount of emissions
		reductions is unknown until the
		actual operation starts.
		No further action is needed.
	Does it need to monitor the	The temperature of inlet and outlet,
	temperature of inlet and outlet water	flow rate are monitored, but they are
	to calculate the emissions reductions?	not needed to calculate the emission
		reductions.
	How did you confirm that the project refrigerators meet the criteria for the	
		The emission reductions are
	operating conditions of the	calculated by the ratio of COP
	methodology?	between project and reference.
		We confirmed the project refrigerators
		meet the criteria by catalogue and
		inspection of equipment by the
		manufacturer.
		No further action is needed.
	Do you have a plan to install any other	We have installed high efficiency air-
	energy-saving equipment than this	conditioning and LED, etc. in parallel
	project?	with this project.
		No further action is needed.

F. References

Reference lists to support descriptions in the PDD, if any.

Attachment

Estimated emissions reductions in each year

[For centrifugal chiller]

Year	Estimated Reference	Estimated Project Emissions	Estimated Emission Reductions (tCO ₂ e)
	emissions	(tCO ₂ e)	
	(tCO ₂ e)		
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	-	-	-
2018	-	-	-
2019	3,336.8	3,170.0	166
2020	3,336.8	3,170.0	194
2021	3,336.8	3,170.0	194
2022	3,336.8	3,170.0	194
2023	3,336.8	3,170.0	194
2024	3,336.8	3,170.0	194
2025	3,336.8	3,170.0	194
2026	3,336.8	3,170.0	194
2027	-	-	-
2028	-	-	-
2029	-	-	-
2030	-	-	-
Total (tCO ₂ e)	26,694.4	25,360.0	1,328

[For Evaporator with Mechanical Vapor Recompression]

Ye	ar	Estimated Reference	Estimated	Project	Estimated	Emission
----	----	---------------------	-----------	---------	-----------	----------

	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	-	-	-
2018	-	-	-
2019	1,664.5	311.6	1,352
2020	1,664.5	311.6	1,352
2021	1,664.5	311.6	1,352
2022	1,664.5	311.6	1,352
2023	1,664.5	311.6	1,352
2024	1,664.5	311.6	1,352
2025	1,664.5	311.6	1,352
2026	1,664.5	311.6	1,352
2027	-	-	-
2028	-	-	-
2029	-	-	-
2030	-	-	-
Total (tCO ₂ e)	13,316.0	2,492.8	10,816.0

Revision history of PDD			
Version	Date	Contents revised	
1.0	##/##/2025	First edition	