JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Energy Saving by Introduction of High Efficiency Chilled Water Supply System in Milk Factory

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to improve energy efficiency of water supply system by introducing high efficiency chillers in milk factory in Thailand. The milk factory needs cool water for production process, and the water supply system consumes significant amount of energy at the milk factory. The proposed project covers production process, such as sterilization and storage, in the factory of CP-Meiji Co., Ltd. in Nongkae district, Saraburi Province of Thailand.

The milk factory introduced high efficiency brine screw chiller with replacing reciprocating chiller, and increased the energy efficiency in stable water supply. For this, reciprocating chiller with ice bank system was replaced with high efficient brine screw chilling unit.

A.3. Location of project, including coordinates

Country	Kingdom of Thailand
Region/State/Province etc.:	Saraburi
City/Town/Community etc:	Nongnak, Nongkae
Latitude, longitude	N 14°44'31"N E 100°89'80"E

A.4. Name of project participants

The Kingdom of Thailand	CP-Meiji Co., Ltd.
Japan	TEPIA Corporation Japan Co., Ltd.

A.5. Duration

Starting date of project operation	08/09/2017
Expected operational lifetime of project	10 years

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the Financing Programmer for JCM Model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits. As for the transfer of technology, the manufacturers provided instruction and manuals for

operation and maintenance during the initial installation.

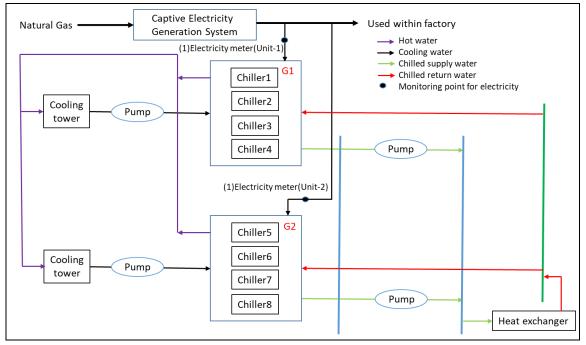
B. Application of an approved methodology(ies)		
B.1. Selection of methodology(ies)		
Selected approved methodology No. TH_AM013		
Version number	01.0	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

Eligibility	Descriptions specified in the	Project information	
criteria	methodology		
Criterion 1	The project installs brine screw	The project chilling unit, "HEM660B II",	
	chiller(s) for freezing and	is a brine screw chilling unit composed of	
	refrigeration.	four modules of chillers, "HEM 165 II".	
	Cooling capacity of a screw chiller	Cooling capacity of HEM165 under the	
	per one module is less than or equals	standardizing temperature conditions is	
	to 1,000 kW.	580.2 kW.	
Criterion 2	COP for project screw chiller(s)	COP of all the project chiller module is	
	calculated under the standardizing	5.28 under the standardizing temperature	
	temperature conditions $(COP_{PJ,tc,i})$ is	conditions.	
	more than COP of the reference		
	screw chiller, with the cooling		
	capacity range same as the project		
	screw chiller.		
	[equation to calculate $\text{COP}_{\text{PJ,tc},i}$]		
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(TC_{cooling-out,i}$		
	— TC _{chilled-out,i}		
	+ TD _{chilled}		
	$+ TD_{cooling}) \div (37)$		
	$-7 + TD_{chilled}$		
	+ TD _{cooling})]		
	COP _{PJ,tc,i} : COP of project		
	screw chiller <i>i</i>		
	calculated under		
	the standardizing		
	temperature		

	aanditi*[]	
COP	conditions* [-]	
COP _{PJC,i}		
	screw chiller i	
	under the catalog	
	conditions of the	
	project screw	
	chiller [-]	
TC _{cooling} -out,i	Output cooling	
	water temperature	
	of project screw	
	chiller <i>i</i> set under	
	the catalog	
	conditions of the	
	project screw	
	chiller [degree	
	Celsius]	
TC _{chilled-out,i}	Output chilled	
	water temperature	
	of project screw	
	chiller <i>i</i> set under	
	the catalog	
	conditions of the	
	project screw	
	chiller [degree	
	Celsius]	
TD _{cooling}		
	difference between	
	condensing	
	temperature of	
	refrigerant and	
	output cooling	
	water temperature,	
	1.5 degree Celsius	
	set as a default	
	value	
	[degree Celsius]	

	TD _{chilled} : Temperature difference between evaporating temperature of refrigerant and output chilled water temperature, 1.5	
	degree Celsius set as a default value [degree Celsius]	
	The standardizing temperature conditions at which COP for project screw chiller(s) calculated in this methodology are shown below: Chilled water: Output 7 degree Celsius Input 12 degree Celsius Cooling water: Output 37 degree Celsius Input 32 degree Celsius	
Criterion 3	Ozone Depletion Potential (ODP) of the refrigerant used for screw chiller(s) is zero.	ODP of HFC 407 E, the refrigerant used in the project chiller is zero.
Criterion 4	A plan for prevention of releasing refrigerant used for project screw chiller is prepared. In the case of replacing the existing chiller with the project screw chiller(s), a plan for prevention of releasing refrigerant used in the existing chiller to the air (e.g. re-use of the equipment) is prepared. Execution of this plan is checked at the time of	At the moment, there is no plan to remove reciprocating chiller since it is still utilized for backup. However, CP-Meiji Co., Ltd. agreed not to release any refrigerant of existing equipment and project chillers when it is removed in the future.


	verification, in order to confirm that refrigerant used for the existing one replaced by the project is prevented from being released to the air.	
Criterion 5	Periodical check at least once a year is planned.	CP-Meiji Co., Ltd. or his representative will conduct periodical check once a year.

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions			
Emission sources	GHG type		
Power consumption by reference water chilling unit	CO ₂		
Project emissions			
Emission sources	GHG type		
Power consumption by project water chilling unit(s)	CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

C.3. Estimated emissions reductions in each year

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	719.2	684.0	35
2018	2,422.0	2,303.0	119
2019	2,422.0	2,303.0	119
2020	2,422.0	2,303.0	119
2021	2,422.0	2,303.0	119
2022	2,422.0	2,303.0	119
2023	2,422.0	2,303.0	119
2024	2,422.0	2,303.0	119
2025	2,422.0	2,303.0	119
2026	2,422.0	2,303.0	119
2027	1,702.8	1,619.0	84
2028	-	-	-
2029	-	-	-
2030	-	-	-
Total (tC	O ₂ e)		1,190

D. Environmental impact assessment

Legal requirement of environmental impact assessment for No the proposed project

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

In order to cover a diverse group of stakeholders, a local stakeholder consultation meeting was

held at the meeting room of CP-Meiji Co., Ltd. on 7th September, 2018.

Participants;

Thailand Greenhouse Gas Management Organization (TGO)

Panasonic Eco Solutions Sales (Thailand) Co., Ltd.

CP-Meiji Co., Ltd

Tepia Corporation Japan Co., Ltd.

Absentee;

The regional office No.7 of Ministry of Natural Resources and Environment (Sent handouts in the meeting to absentee after the meeting.)

Stakeholders	Comments received	Consideration of comments received		
Thai	Want to know how to control 8 units	Showed the actual chiller systems and		
Greenhouse	of Chiller, and how much those	explained that the chillers are		
Gas	chillers can control the loading of	correspond with the loading at		
Management	chilling water.	production line, and the system can		
Organization		absorb the changing of loading in the		
(TGO)		range of 30 to 100%.		
		(No further action needed.)		
	The electricity in the factory is	In usual situation, the electricity from		
	provided from both power grid and	those two sources is mixed at		
	Co-generation System. How to know	upstream. Tepia Corporation Japan, as		
	the actual Chiller System's electricity a representative entity of the			
	consumption volume from each grid,	will calculate the amount of CO2		
	to calculate CO2 emission reduction	emission reduction by using lower		
	amount?	emission factor in those two sources,		
		as it is designated in JCM		
	Methodology.			
		(No further action needed.)		

E.2. Summary	of comments	received and	their of	consideration

F. References	
n/a	

Reference lists to support descriptions in the PDD, if any.

Annex	
n/a	

Revision history of PDD			
Version	Date	Contents revised	
1.0	11/26/2021	First edition	