JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Kingdom of Thailand	
Name of the methodology proponents	Institute for Global Environmental Strategies	
submitting this form		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable – /	
Methodology applies	non-renewable sources)	
Title of the proposed methodology, and	Installation of gas engine cogeneration system to	
version number	supply electricity and heat, Version 01.0	
List of documents to be attached to this	☐ The attached draft JCM-PDD:	
form (please check):	⊠Additional information	
Date of completion	11/09/2018	

History of the proposed methodology

Version	Date	Contents revised	
01.0	11/09/2018	First Edition	

A. Title of the methodology

Installation of gas engine cogeneration system to supply electricity and heat, Version 01.0

B. Terms and definitions

Terms	Definitions	
Cogeneration System (CGS)	A system that consists of power generator(s) and heat	
	generating equipment (e.g. heat recovery steam generator,	
	exhaust heat exchanger, etc.) and supplies both electricity	
	and heat, recovering waste heat exhausted from the power	
	generator(s). The power generator(s) is a gas engine(s) in this	
	methodology.	
Recipient Facility	A cluster of buildings and/or plants (or building/plant itself)	
	to which electricity and heat generated by CGS are supplied.	
Boiler Efficiency	Net quantity of heat generated per quantity of energy	
	contained in fuel fired in the boiler.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Electricity and heat generated by a CGS installed in a project	
measures	site substitute all or part of grid and/or captive electricity as	
	well as heat, which leads to efficient energy use of recipient	
	facility(ies) and in turn GHG emission reductions.	
Calculation of referenc	Reference emissions are CO ₂ emissions from the use of grid	
emissions	and/or captive electricity and heat generated by a reference	
	boiler, which are calculated based on: the amount of electricity	
	consumed by the recipient facility(ies) which is generated by	
	the CGS; the amount of heat consumed by the recipient	
	facility(ies) which is generated by the CGS; CO ₂ emission	
	factors for consumed electricity in the recipient facility(ies);	
	reference boiler efficiency and fossil fuel consumed by the	
	reference boiler.	

Calculation of project	Project emissions are CO ₂ emissions from the use of CGS,		
emissions	which are calculated based on: the amount of gas fuel		
	consumed by the CGS; net calorific value of gas fuel		
	consumed by the CGS; and CO ₂ emission factor of gas fuel		
	consumed by the CGS.		
Monitoring parameters	Amount of electricity consumed by the recipient		
	facility(ies) which is generated by the CGS		
	Amount of heat consumed by the recipient facility(ies)		
	which is generated by the CGS		
	Amount of gas fuel consumed by the CGS		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	A CGS, whose power generation is driven by a gas engine(s), is newly installed
	and supplies electricity and heat to recipient facility(ies).
Criterion 2	Electricity and heat, each of which is generated in separate systems, is supplied
	to and consumed by recipient facility(ies) before the installation of a project
	CGS.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption in recipient facility(ies)	CO ₂	
Fossil fuel consumption for production of heat consumed in recipient	CO_2	
facility(ies)		
Project emissions		
Emission sources	GHG types	
Gas fuel consumption by CGS	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on: the amount of electricity generated by the CGS and consumed by the recipient facility(ies); the amount of heat generated by the CGS and consumed by the recipient facility(ies); reference boiler efficiency; and CO₂ emission factors for consumed electricity in the recipient facility(ies) and fossil fuel consumed by the reference boiler.

A default value for the reference boiler efficiency is conservatively set to 89 [%] taking the highest value among those products sold in Thailand, so as to ensure net emission reductions.

F.2. Calculation of reference emissions

$$\begin{aligned} RE_p &= \sum_{i} RE_{elec,i,p} + \sum_{i} RE_{heat,i,p} \\ &= \sum_{i} \left(EC_{i,p} \times EF_{elec,i} \right) + \sum_{i} HC_{i,p} \times \frac{100}{\eta_{RE}} \times EF_{fuel,RE} \end{aligned}$$

Where

 RE_p : Reference emissions during the period p [tCO₂/p]

 $RE_{elec,i,p}$: Reference emissions for electricity consumed by the recipient facility i

which is generated by the CGS during the period p [tCO₂/p]

 $RE_{heat,i,p}$: Reference emissions for heat consumed by the recipient facility i which

is generated by the CGS during the period p [tCO₂/p]

 $EC_{i,p}$: Amount of electricity consumed by the recipient facility i which is

generated by the CGS during the period p [MWh/p]

 $EF_{elec,i}$: CO₂ emission factor for consumed electricity in the recipient facility i

[tCO₂/MWh]

 $HC_{i,n}$: Amount of heat consumed by the recipient facility i which is generated

by the CGS during the period p [GJ/p]

 η_{RE} : Reference boiler efficiency [%]

 $EF_{fuel,RE}$: CO₂ emission factor for fossil fuel consumed by the reference boiler

[tCO₂/GJ]

i : Identification number for the recipient facility to which electricity and

heat generated by the CGS is supplied

G. Calculation of project emissions

$$PE_p = FC_{CGS,p} \times NCV_{fuel,CGS} \times EF_{fuel,PJ}$$

Where

 PE_p : Project emissions during the period p [tCO₂/p]

 $FC_{CGS,p}$: Amount of gas fuel consumed by the CGS during the period p [mass or

volume/p]

 $NCV_{fuel,CGS}$: Net calorific value of gas fuel consumed by the CGS [GJ/mass or

volume]

 $EF_{fuel,PJ}$: CO₂ emission factor for gas fuel consumed by the CGS [tCO₂/GJ]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

Where

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
η_{RE}	Reference boiler efficiency.	Value derived from the
	Default value is set to 89 [%].	result of survey. The default
		value, 89 [%], should be
		revised if necessary.
$NCV_{fuel,CGS}$	Net calorific value of gas fuel consumed by the	In the order of preference:
	CGS [GJ/mass or volume].	a) values provided by fuel
		supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values; or

1) values provided by the

d) IPCC default values provided in table 1.2 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Upper value is applied. $EF_{elec,i}$ CO₂ emission factor for consumed electricity in [Grid electricity] the recipient facility i [tCO₂/MWh]. The most recent value available at the time of When the recipient facility consumes only grid validation is applied and electricity or captive electricity, the project fixed for the monitoring participant applies the CO2 emission factor period thereafter. The data is sourced respectively. from Emission Factor (GEF) of When both grid electricity and captive electricity Thailand", endorsed may be consumed in the recipient facility, the Thailand Greenhouse Gas project participant applies the CO₂ emission factor Management Organization, with lower value. unless otherwise instructed by the Joint Committee. [CO₂ emission factor] For grid electricity: The most recent value [Captive electricity] available from the source stated in this table at the For the option a) time of validation Specification of the captive For captive electricity including cogeneration power generation system system, it is determined based on the following connected to the recipient options: facility *i*, provided by the manufacturer ($\eta_{can.i}$ [%]). CO₂ emission factor of the a) Calculated from its power generation efficiency $(\eta_{cap,i} \ [\%])$ obtained from manufacturer's fuel consumed by the specification captive power generation The power generation efficiency based on lower system connected to the recipient facility i heating value (LHV) of the captive power generation system from the manufacturer's $(EF_{fuel,cap,i} [tCO_2/GJ])$ in specification is applied; order of preference:

$$EF_{elec,i} = 3.6 \times \frac{100}{\eta_{cap,i}} \times EF_{fuel,cap,i}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{cap,i,p}$) and the amount of electricity generated ($EG_{cap,i,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec,i} = FC_{cap,i,p} \times NCV_{fuel,cap,i} \times EF_{fuel,cap,i}$$
$$\times \frac{1}{EG_{cap,i,p}}$$

Where:

 $NCV_{fuel,cap,i}$: Net calorific value of the fuel consumed by the captive power generation system connected to the recipient facility i [GJ/mass or volume]

Note:

In case the captive electricity generation system connected to the recipient facility i meets all of the following conditions, the value in the following table may be applied to $EF_{elec,i}$ depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
$EF_{elec,i}$	0.8 *1	0.46 *2

fuel supplier;

- 2) measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in table 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

For the option b)

Generated and supplied electricity by the captive power generation system connected to the recipient facility i ($EG_{cap,i,p}$ [MWh/p]).

Fuel amount consumed by the captive power generation system connected to the recipient facility i ($FC_{cap,i,p}$ [mass or volume/p]).

Net calorific value $(NCV_{fuel,cap,i} \ [GJ/mass \ or \ volume])$ and CO_2 emission factor of the fuel $(EF_{fuel,cap,i} \ [tCO_2/GJ])$ in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values;

	1 1 2 11 1	() mag 1 (1 1
	*1 The most recent value at the time of validation	4) IPCC default values
	is applied.	provided in tables 1.2 and
	*2 The value is calculated with the equation in the	1.4 of Ch.1 Vol.2 of 2006
	option a) above. The lower value of default	IPCC Guidelines on
	effective CO ₂ emission factor for natural gas	National GHG Inventories.
	(0.0543 tCO ₂ /GJ), and the most efficient value of	Lower value is applied.
	default efficiency for off-grid gas turbine systems	
	(42%) are applied.	[Captive electricity with
		diesel fuel]
		CDM approved small scale
		methodology: AMS-I.A.
		[Captive electricity with
		natural gas]
		2006 IPCC Guidelines on
		National GHG Inventories
		for the source of EF of
		natural gas.
		CDM Methodological tool
		"Determining the baseline
		efficiency of thermal or
		electric energy generation
		systems version02.0" for the
		default efficiency for
		off-grid power plants.
$EF_{fuel,RE}$	CO ₂ emission factor for fossil fuel consumed by	In the order of preference:
	the reference boiler [tCO ₂ /GJ].	a) values provided by fuel
	CO ₂ emission factor of natural gas is applied in	supplier;
	this methodology in a conservative manner.	b) measurement by the
		project participants;
		c) regional or national
		default values; or
		d) IPCC default values
		provided in table 1.4 of
		Ch.1 Vol.2 of 2006
		IPCC Guidelines on
		National GHG
		<u>I</u>

		Inventories. Lower value
		is applied.
$EF_{fuel,PJ}$	CO ₂ emission factor for gas fuel consumed by the	In order of preference:
	CGS [tCO ₂ /GJ].	a) values provided by fuel
		supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values; or
		d) IPCC default values
		provided in table 1.4 of
		Ch.1 Vol.2 of 2006
		IPCC Guidelines on
		National GHG
		Inventories. Upper value
		is applied.