JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand		
Name of the methodology proponents	Mitsubishi UFJ Morgan Stanley Securities		
submitting this form	Co., Ltd.		
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Introducing heat recovery heat pumps with		
version number	natural refrigerants for the food manufacturing		
	industries, version01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	05/09/2018		

History of the proposed methodology

Version	Date	Contents revised
01.0	05/09/2018	First edition

A. Title of the methodology

Introducing heat recovery heat pumps with natural refrigerants for the food manufacturing industries, version01.0

B. Terms and definitions

Terms	Definitions			
Heat recovery electric heat	A heat recovery electric heat pump is a heat pump system			
pump (HP)	where hot and chilled water is simultaneously generated			
	through reutilizing waste heat.			
Natural refrigerant	Natural refrigerant refers to naturally occurring substance			
	with refrigeration capacity and with zero ozone depletion			
	potential (ODP) (e.g., CO2 and NH3).			
Compressor	In this methodology, a compressor signifies positive			
	displacement refrigeration compressors (e.g. screw and			
	reciprocating types) for industrial applications and			
	excludes compressors used in a chiller.			
Coefficient of Performance	For the purpose of this methodology, COP is defined as a			
(COP)	ratio of rated cooling capacity to the rated electricity			
	consumption by a compressor, and it is calculated using			
	following formula			
	COP=Q/W			
	Where:			
	Q: Rated cooling capacity of a compressor			
	W: Rated electricity consumption by a compressor			
	The temperature conditions at which COPs are calculated			
	in this methodology are shown below:			
	• Condensing temperature: 38 degree Celsius			
	• Evaporating temperature: -5 degree Celsius			

C. Summary of the methodology

Items	Summary				
GHG emission reduction	This methodology applies to the project that aims at saving				
measures	energy by introducing (a) heat recovery electric HP(s) in a food				
	manufacturing process.				
Calculation of reference	Reference emissions are GHG emissions from using reference				
emissions	equipment for the generation of hot and chilled water. They are				
	calculated by the ratio of efficiency between reference				
	equipment and project HPs and CO2 emission factors of				
	electricity and fossil fuel consumed.				
Calculation of project	Project emissions are GHG emissions from using the project				
emissions	HPs and their auxiliary electric equipment, and they are				
	calculated with their electricity consumption and the CO ₂				
	emission factor of electricity consumed.				
Monitoring parameters	• Electricity consumption of the project HPs				
	• Electricity consumption of the auxiliary electric equipment				
	of the HPs				

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	A project newly introduces (a) high efficiency HP(s) using natural refrigerants		
	to a food manufacturing plant and it does not replace (an) existing HP(s). In		
	case of HPs supplying chilled water, the water is fed into a refrigeration		
	system of the plant which uses either screw or reciprocating compressors.		
Criterion 2	The cooling capacity of a HP unit is more than or equal to 50kW and less than		
	1600kW.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Electricity consumption by reference equipment for generating chilled	CO ₂		
water			
Fuel consumption by reference equipment for generating hot water	CO_2		
Project emissions			

Emission sources	GHG types
Electricity consumption by HPs	CO_2
Electricity consumption by auxiliary electric equipment of HPs (e.g.	CO_2
pump)	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

This methodology only applies to a food manufacturing plant which uses hot and chilled water for the industrial process.

Reference emissions are calculated by multiplying electricity consumption of the project by the ratio of efficiency between a reference equipment and project HPs, and emission factors of electricity and fossil fuel consumed.

The reference equipment is identified as a boiler for the hot water generation and a compressor (*1) for the chilled water generation as their loads are partially replaced by the project HPs. The methodology ensures a net emission reduction by conservatively setting default efficiency values for both reference boiler and compressor respectively as specified below:

<Boiler>

This methodology applies a conservative default value of the reference boiler efficiency as 89 [%], which is the highest value among the products sold in Thailand, so as to ensure net emission reductions.

<Compressor>

This methodology doubly ensures the conservativeness of the default efficiency values of compressors, expressed in COPs, in the following manner:

- The highest design efficiencies of screw- and reciprocating-type models—two main displacement compressor types used in the food manufacturing industries—are selected from dominant compressor manufacturers' lineups available in Thailand; and
- 2) The methodology applies COPs for the compressors instead of the one for the whole refrigeration system whose efficiency is lower than that of the compressors due to some heat loss in the system.

The default COP value for the calculation of the reference emission can be selected based on the

rated cooling capacity of the existing compressor at the time of validation.

(*1) The water is fed into a refrigeration system of the plant, which consists of individual components of compressors, evaporators, condensers and other relevant parts mounted together to form a custom-made system to meet specific needs of the operation. By using the HPs to lower the inlet water temperature of the refrigeration system, the electricity consumption of the compressor is reduced.

F.2. Calculation of reference emissions

Γ

Г

RE	$p = \sum_{i} \frac{EC_{PJ,i,p} \times 3.6}{ECR_{i}} \times \frac{H_{i}}{\eta_{REh}} \times EF_{REh} + \sum_{i} \frac{EC_{PJ,i,p}}{ECR_{i}} \times \frac{CH_{i}}{COP_{RE}} \times EF_{elec}$
RE_p	: Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$: Electricity consumed by the project HP i during the period p [MWh/p]
ECR _i	: Rated electricity consumption of the project HP <i>i</i> [kW]
H_i	: Rated heating capacity of the project HP <i>i</i> [kW]
η_{REh}	: Efficiency of the reference boiler for heating energy generation [-]
$\mathrm{EF}_{\mathrm{REh}}$: CO ₂ emission factor for the fuel consumed by the reference boiler for heating energy generation [tCO ₂ /GJ]
CH _i	: Rated cooling capacity of the project HP <i>i</i> [kW]
COP _{RE}	: Efficiency of the reference compressor for cooling energy generation [-]
EF _{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Identification number of the project HP

G. Calculation of project emissions

$$PE_{p} = \left(\sum_{i} EC_{PJ,i,p} + \sum_{j} EC_{PJ_{AUX,j,p}}\right) \times EF_{elec}$$

$$\frac{EC_{PJ,i,p}}{EC_{PJ_{AUX,j,p}}} : Electricity consumed by the project HP i during the period p [MWh/p]}{EC_{PJ_{AUX,j,p}}} : Electricity consumed by the auxiliary electric equipment j for the project HP(s)$$

	during the period p [MWh/p]
:	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
:	Identification number of the auxiliary electric equipment for the project HP(s)

H. Calculation of emissions reductions

ER _p : Emi	ssion reductions during the period p [tCO ₂ /p]					
RE _p : Refe	: Reference emissions during the period <i>p</i> [tCO ₂ /p]					
PE _p : Proj	ect emissions during the period p [tCO ₂ /p]					

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
ECR _i	Rated electricity consumption of the project HP i	Rated/provided by the
	[kW]	technology supplier
H _i	Rated heating capacity of the project HP i [kW]	Rated/provided by the
		technology supplier
η_{REh}	Efficiency of the reference boiler for heating energy	Value derived from the
	generation	result of survey. The
		default value, 89.0 [%],
	Default value is set to 89.0 [%].	should be revised if
		necessary.
$\mathrm{EF}_{\mathrm{REh}}$	CO_2 emission factor for the fuel consumed by the	In the order of preference:
	reference boiler for heating energy generation	a) values provided by the
	[tCO ₂ /GJ]	fuel supplier;
		b) measurement by the
	If there is an oil-fired boiler at the project site, the	project participants;
	fuel used for the boiler is applied.	c) national default values;
	Otherwise, the CO ₂ emission factor of natural gas is	d) IPCC default values
	applied in a conservative manner.	provided in table 1.4 of

CHi						
CH _i						Guidelines on National
СНі			GHG Inventories. Lower			
CH _i						value is applied.
	Rated cooling capacity of the project HP <i>i</i> [kW]			Rated/provided by the		
1					technology supplier	
COP _{RE}	Efficiency of reference compressor for cooling				The default value is derived	
	energy generat	tion				from the result of survey of
						compressors used for in the
	Default efficie	ncy value f	or the comp	pressor to w	hich	food manufacturing sector
	the project HP	<i>i</i> supplies t	he water:			for the production process.
						The survey is comprised of
	Cooling Conceiter/unit	50kW≤x	400kW≤x	800kW≤x		manufacturers with a high
	Capacity/unit (kW)	<400kW	<800kW	<1600kW		market share in Thailand.
	COPs	4.01	4.09	4.21		
	Conditions:					
	- Evaporating	temperature	e = -5 degre	e Celsius		
	- Condensing	temperature	e = 38 degre	ee Celsius		
EF _{elec}	CO ₂ emission	factor for c	onsumed el	ectricity		[Grid electricity]
LI elec			onsumed er	courienty.		The most recent value
	When the proj	ect HPs cor	nsume onlv	grid electric	citv	available at the time of
			-	-	•	validation is applied and
	or captive electricity, the project participant applies the CO_2 emission factor respectively.			fixed for the monitoring		
	_		1 5			period thereafter. The data
	When the proj	ect HPs ma	y consume	both grid		is sourced from "Grid
	electricity and		•	-		Emission Factor (GEF) of
	participant app	olies the CC	D_2 emission	factor of lov	wer	Thailand", endorsed by
	value.					Thailand Greenhouse Gas
						Management Organization
						unless otherwise instructed
	[CO ₂ emission	factor]				by the Joint Committee.
	For grid electr	icity: The n	nost recent	value availa	ble	
	from the source	e stated in	this table at	the time of		[Captive electricity]
	validation.					For the option a)

For captive electricity including cogeneration system, it is determined based on the following options:

a) Calculated from its power generation efficiency $(\eta_{elec} [\%])$ obtained from manufacturer's specification

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period *p* is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

The system is non-renewable generation systemElectricity generation capacity of the system is

Specification of the captive power generation system provided by the manufacturer (η_{elec} [%]). CO₂ emission factor of the fossil fuel type used in the captive power generation system (EF_{fuel} [tCO₂/GJ])

For the option b) Generated and supplied electricity by the captive power generation system $(EG_{PJ,p} [MWh/p]).$ Fuel amount consumed by the captive power generation system (FC_{PJ,p} [mass or volume/p]). Net calorific value (NCV_{fuel} [GJ/mass or volume]) and CO₂ emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference: 1) values provided by the fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

less than o	equal to 15 MV	[Captive electricity with	
fuel typ	Diesel fuel	Natural gas	diesel fuel] CDM approved small scale
EFeleo	0.8 *1	0.46 *2	methodology: AMS-I.A.
applied. *2 The value is option a) abov CO ₂ emission t and the most e	ent value at the calculated with The lower valu ctor for natural icient value of c ine systems (42	 natural gas] e 2006 IPCC Guidelines on hational GHG Inventories GJ), for the source of EF of 	