Joint Crediting Mechanism Approved Methodology TH_AM005 "Energy Saving by Introduction of High Efficiency Non-Inverter Type Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Non-Inverter Type Centrifugal Chiller, Version <u>0402</u>.0

B. Terms and definitions

Terms	Definitions	
Non-inverter typ	A non-inverter type centrifugal chiller is a chiller including a	
centrifugal chiller	centrifugal compressor without inverter. It is commonly used for	
	air-conditioning with huge cooling load, e.g., buildings,	
	shopping malls or factories etc.	
Cooling capacity	Cooling capacity is the capability of individual chiller to remove	
	heat. In this methodology, "cooling capacity" is used to represent	
	a cooling capacity per one chiller unit and not for a system with	
	multiple chiller units.	
Periodical check	Periodical check is a periodical investigation of chiller done by	
	manufacturer or agent who is authorized by the manufacturer, in	
	order to maintain chiller performance.	

C. Summary of the methodology

Items	Summary
GHG emission reduction	This methodology applies to the project that aims for saving
measures	energy by introducing high efficiency centrifugal chiller for the
	target factory, commercial facilities etc. in Thailand.
Calculation of reference	Reference emissions are GHG emissions from using reference
emissions	chiller, calculated with power consumption of project chiller,
	ratio of COPs (Coefficient Of Performance) of reference/project
	chillers and CO ₂ emission factor for electricity consumed.

Calculation of project	Project emissions are GHG emissions from using project chiller,	
emissions	calculated with power consumption of project chiller and CO ₂	
	emission factor for electricity consumed.	
Monitoring parameter	Power consumption of project chiller	
	• The amount of fuel consumed and/or the amount of	
	electricity generated by captive power, where applicable.	

D. Eligibility	criteri	a				
This methodology is applicable to projects that satisfy all of the following criteria.						
Criterion 1	Project chiller is a non-inverter type centrifugal chiller with a capacity which					
	is less	than or equals to 1,	500 USRt.			
	Note:	1 USRt = 3.52 kW				
Criterion 2	COP	for project chiller	i calculated	under the star	ndardizing tempe	rature
	condi	tions*1 (COP _{PJ,tc,i}) is	more than the	threshold CO	P values set in the	e table
	below	v. ("x" in the table re	presents coolir	ng capacity per	unit.)	
		Cooling capacity per unit [USRt]	300≤x<500	500≤x<800	800≤x≤1500	
		Threshold COP value	5.67	5.81	6.05	
	COP _{PJ,tc,i} is calculated by altering the temperature conditions of COP of project chiller i (COP _{PJ,i}) from the project specific conditions to the standardizing conditions. COP _{PJ,i} is derived from specifications prepared for the quotation or factory acceptance test data by manufacturer. [equation to calculate COP _{PJ,tc,i}] $COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled} + TD_{chilled}) $ $+ TD_{cooling}) \div (37 - 7 + TD_{chilled} + TD_{chilled})]$					
	$+ TD_{cooling}) \div (37 - 7 + TD_{chilled} + TD_{cooling})]$					

$$\begin{aligned} \text{COP}_{\text{PJ,tc,i}} &= \text{COP}_{\text{PJ,i}} \times \left[(T_{\text{cooling-out,i}} - T_{\text{chilled-out,i}} + TD_{\text{chilled}} \right. \\ &\quad + TD_{\text{cooling}}) \div (37 - 7 + TD_{\text{chilled}} + TD_{\text{cooling}}) \right] \\ \text{COP}_{\text{PJ,tc,i}} &: \text{COP of project chiller } i \text{ calculated under the standardizing temperature conditions* [-]} \\ \text{COP}_{\text{PJ,i}} &: \text{COP of project chiller } i \text{ under the project specific conditions [-]} \\ \text{T}_{\text{cooling-out,i}} &: \text{Output cooling water temperature of project chiller } i \text{ set under the project specific conditions [degree Celsius]} \\ \text{T}_{\text{chilled-out,i}} &: \text{Output chilled water temperature of project chiller } i \text{ set} \end{aligned}$$

	under the project specific conditions [degree Celsius]		
	TD _{cooling} : Temperature difference between condensing temperature		
	of refrigerant and output cooling water temperature		
	1.5 degree Celsius set as a default value [degree Celsius]		
	TD _{chilled} : Temperature difference between evaporating temperature		
	of refrigerant and output chilled water temperature,		
	1.5 degree Celsius set as a default value [degree Celsius]		
	*1 : The standardizing temperature conditions to calculate COP _{PJ,tc,i}		
	Chilled water: output 7 degrees Celsius		
	input 12 degrees Celsius		
	Cooling water: output 37 degrees Celsius		
	input 32 degrees Celsius		
Criterion 3	Periodical check is planned at least one (1) time annually.		
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is		
	zero.		
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is		
	prepared. In the case of replacing the existing chiller with the project chiller, a		
	plan for prevention of releasing refrigerant used in the existing chiller to the		
	air (e.g. re-use of the equipment) is prepared. Execution of this plan is		
	checked at the time of verification, in order to confirm that refrigerant used		
	for the existing one replaced by the project is prevented from being released		
	to the air.		

E. Emission Sources and GHG types

Reference emissions		
Reference emissions		
Emission sources	GHG types	
Power consumption by reference chiller CO ₂		
Project emissions		
Emission sources	GHG types	
Power consumption by project chiller CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio

of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference COP value varies by its cooling capacity.
- 2. The maximum values of COP in each cooling capacity range set for this methodology are defined as COP_{RE,i} as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times \left(COP_{PJ,tc,i} \div COP_{RE,i} \right) \times EF_{elec} \}$$

RE_n: Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

 $\mathsf{COP}_{\mathsf{PJ},\mathsf{tc},\mathsf{i}}$: COP of project chiller i calculated under the standardizing temperature conditions

[-]

 $COP_{RE,i}$: COP of reference chiller *i* under the standardizing temperature conditions [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_{p} : Project emissions during the period p [tCO₂/p]

 $EC_{PLi,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity. When project chiller consumes only 1) grid electricity—or, 2) captive electricity, or 3) electricity directly supplied from small power producer (SPP) to the project site through its internal grid (e.g. industrial park), the project participant applies the CO ₂ emission factor respectively.	[Grid electricity] The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Grid Emission Factor (GEF) of Thailand", endorsed by Thailand Greenhouse Gas Management Organization unless otherwise instructed
	When project chiller may consume electricity supplied from both grid electricity and captive electricitymore than 2 electric sources, the project participant applies the CO ₂ emission factor with lowerthe lowest value.	by the Joint Committee. [Captive electricity] For the option a)
	[CO ₂ emission factor] For 1) grid electricity: The most recent value available from the source stated in this table at the time of validation For 2) captive electricity including cogeneration	Specification of the captive power generation system provided by the manufacturer (η_{elec} [%]). CO ₂ emission factor of the fossil fuel type used in the captive power generation system (EE
	system, it is determined based on the following options: a) Calculated from its power generation efficiency (η _{elec} [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;	generation system (EF _{fuel} [tCO ₂ /GJ]) For the option b) Generated and supplied electricity by the captive power generation system (EG _{PJ,p} [MWh/p]). Fuel amount consumed by the captive power generation system (FC _{PJ,p} [mass or weightvolume /p]).

Parameter	Description of data	Source		
	$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	[GJ/mass or weightvolume]) and CO ₂ emission factor of the fuel		
	b) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards; $EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$	(EF _{fuel} [tCO ₂ /GJ]) in order of preference: 1) values provided by the fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.		
	Where: NCV _{fuel} : Net calorific value of consumed fuel [GJ/mass or weightvolume]	[Captive electricity with diesel fuel] CDM approved small scale methodology: AMS-I.A.		
	Note: In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF _{elec} depending on the consumed fuel type. The system is non-renewable generation system Electricity generation capacity of the system is less than or equal to 15 MW fuel type Diesel fuel Natural gas EF _{elec} 0.8 *1 0.46 *2	[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas. CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation systems version02.0" for the default efficiency for		
		off-grid power plants.		
	*1 The most recent value at the time of validation is applied.			

Parameter	Description of data			Source
	*2 The value is calculated the option a) above. The			
	effective CO ₂ emission			
	(0.0543tCO ₂ /GJ), and of default efficiency			
	systems (42%) are appl	•	gas turbine	
	For 3) electricity direct	ly supplied	from small	
	power producer (SPP),		nined based	
	on the following option		with the	
	a) The value provided be evidence;	by the SFF v	<u>viui uie</u>	
	b) The value calculated	in the same	e manner for	[Electricity directly supplied from SPP]
	the option a) of 2) capti	ve electricit	ty as	
	instructed above;			For option a) the evidence may include a quotation of
	c) The value calculated	in the same	manner for	emission factor from the
	the option b) of 2) capti	ve electrici	ty as	SPP.
	instructed above;			
	When project chiller may consume electricity			
	supplied from more than 2 SPPs, the project participant applies the CO ₂ emission factor with			
	the lowest value.			
COP _{RE,i}	The COP of the reference chiller i is selected			The default COP values are
	from the default COP	value in t	the following	derived from the result of survey on COP of chillers
	table in line with coolir			from manufacturers that
	chiller i. ("x" in the table represents cooling			have high market share. The survey should prove
	capacity per unit.)			the use of clear
	Cooling capacity /unit (USRt) 300≤x<5	500≤x<8 00	800≤x≤15 00	methodology. The COP _{RE,i} should be revised if necessary from survey
	COP _{RE,i} 5.67	5.81	6.05	result which is conducted by JC or project
COP _{PJ,i}	The COP of project chiller <i>i</i> under the project specific conditions.			participants. Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer

Parameter	Description of data	Source
T _{cooling-out,i}	Output cooling water temperature of project chiller <i>i</i> set under the project specific conditions.	Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer
T _{chilled-out,i}	Output chilled water temperature of project chiller <i>i</i> set under the project specific conditions.	Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer

History of the document

Version	Date	Contents revised
01.0	21 August 2017	JC3, Annex 7
		Initial approval.
<u>02.0</u>	xx June 2018	Revision to:
		• Add option to identify CO ₂ emission factor for consumed
		electricity by changing the description of CO ₂ emission factor for
		consumed electricity directly supplied from small power producer
		(SPP).
		• Change the description of "Measurement methods and
		procedures", "Source of data", "Description of data" and "Units"
		in the monitoring spreadsheet
'		