JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand	
Name of the methodology proponents	NTT DATA INSTITUTE OF MANAGEMENT	
submitting this form	CONSULTING, Inc.	
Sectoral scope(s) to which the Proposed	1. Energy industries	
Methodology applies		
Title of the proposed methodology, and	Power Generation by Waste Heat Recovery in	
version number	Cement Industry, Version 1.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
	1) Overview of introduced equipment and	
	technologies.	
Date of completion	14/12/2017	

History of the proposed methodology

Version	Date	Contents revised		
01.0	14/12/2017	First edition		

A. Title of the methodology

Power Generation by Waste Heat Recovery in Cement Industry, Version 01.0

B. Terms and definitions

Terms	Definitions	
Waste heat	Heat generated from cement production facility which would	
	not have been recovered in the absence of the project.	
Preheater boiler	Boiler which recovers waste heat from a preheater, which	
	pre-heats raw materials fed into a rotary kiln, to generate	
	steam.	
Air Quenching Cooler boiler	Boiler which recovers waste heat from an air quenching	
(AQC boiler)	cooler to generate steam.	
Waste Heat Recovery system	Power generation system consisting of a preheater boiler	
(WHR system)	and/or AQC boiler, turbine generator and cooling tower that	
	utilizes waste heat from cement production facility.	

C. Summary of the methodology

Items	Summary		
GHG emission reduction	Waste heat recovery (WHR) system which generates electricity		
measures	through waste heat recovered from cement production facility.		
	Electricity generated from the WHR system replaces grid		
	electricity or captive resulting in GHG emission reductions of the		
	connected electricity system.		
Calculation of reference	Reference emissions are calculated from net electricity		
emissions	generation by the project which replaces grid electricity or		
	captive use where the project is implemented during a given time		
	period.		
Calculation of project	Project emissions are not considered as the WHR system does		
emissions	not utilize any fossil fuel as a heat source to generate steam for		
	power generation.		
Monitoring parameters	The quantity of the electricity supplied from the WHR system to		

the cement production facility and the number of days during a
monitoring period

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs waste heat recovery (WHR) system in the cement production
	facility.
Criterion 2	WHR system utilizes only waste heat and does not utilize fossil fuels as a heat
	source to generate steam for power generation.
Criterion 3	WHR system has not been introduced to a corresponding cement kiln of the
	project prior to its implementation.

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Grid electricity or captive power generation	CO_2		
Project emissions			
Emission sources	GHG types		
N/A	N/A		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated on the basis of net electricity generation by the project that replaces grid or captive electricity.

The quantity of electricity consumed by the WHR system except for direct captive use of the electricity generated by itself is subtracted from the quantity of the electricity supplied from the WHR system to the cement production facility to calculate net electricity generation.

In order to ensure conservativeness, the quantity of electricity consumption by the WHR system except for the direct captive use of the electricity generated by itself, is calculated by using the

theoretically maximum load for the capacity of equipment in the above-mentioned WHR system.

F.2. Calculation of reference emissions

 $RE_p = EG_p * EF_{elec}$

Where,

 RE_p : Reference emissions during a given time p [tCO₂/p]

 EG_p : The quantity of net electricity generation by the WHR system during a given time period p [MWh/p]

EF_{elec}: CO₂ emission factor for consumed electricity[tCO₂/MWh]

Determination of EG_p

 $EG_p = EG_{SUP,p}$ - $EC_{AUX,p}$

 $EG_{SUP,p}$: The quantity of the electricity supplied from the WHR system to the cement production facility during a given time period p [MWh/p]

 $EC_{AUX,p}$: The quantity of electricity consumption by the WHR system except for the direct captive use of the electricity generated by itself during a given time period p [MWh/p]

Determination of $EC_{AUX,p}$

 $EC_{AUX,p} = EC_{CAP} * 24(hours/day) * D_p$

EC_{CAP}: The total maximum rated capacity of equipment of the WHR system which consumes electricity except for the capacity of equipment which use the electricity generated by itself directly [MW]

 D_P : The number of days during a given time period p [day/p]

G. Calculation of project emissions

Project emissions are not assumed in the methodology as the WHR system utilizes only waste heat and does not utilize fossil fuels as heat source to generate steam for power generation, which is prescribed in the eligibility criterion 2.

Therefore, the following formula is used to express the project emissions:

 $PE_p = 0$

H. Calculation of emissions reductions

Emission reductions are calculated as the difference between the reference emissions and project emissions, as follows:

$$ER_p = RE_p - PE_p$$

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF_{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		The most recent value available
	When the electricity supplied from the WHR	at the time of validation is
	system displaces only grid electricity or	applied and fixed for the
	captive electricity, the project participant	monitoring period thereafter.
	applies the CO ₂ emission factor respectively.	The data is sourced from " Grid
		Emission Factor (GEF) of
	When the electricity supplied from the WHR	Thailand", endorsed by
	system displaces both grid electricity and	Thailand Greenhouse Gas
	captive electricity, the project participant	Management Organization
	applies the CO ₂ emission factor with lower	unless otherwise instructed by
	value.	the Joint Committee.
	[CO ₂ emission factor]	[Captive electricity]
	For grid electricity: The most recent value	For the option a)
	available from the source stated in this table at	Specification of the captive
	the time of validation	power generation system
		provided by the manufacturer
	For captive electricity, it is determined based	$(\eta_{elec} [\%]).$
	on the following options:	CO ₂ emission factor of the
		fossil fuel type used in the
	a) Calculated from its power generation	captive power generation
	efficiency (nelec [%]) obtained from	system (EF _{fuel} [tCO ₂ /GJ])

manufacturer's specification

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation $(FC_{PJ,p})$ and the amount of electricity generated $(EG_{PJ,p})$ during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PL,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

For the option b)
Generated and supplied
electricity by the captive power
generation system ($EG_{PJ,p}$ [MWh/p]).

Fuel amount consumed by the captive power generation system ($FC_{PJ,p}$ [mass or weight/p]).

Net calorific value (NCV_{fuel} [GJ/mass or weight]) and CO₂ emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- regional or national default values;
- 4) IPCC default values provided in table 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel]

CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas]

2006 IPCC Guidelines on

	fuel type	Diesel fuel	Natural gas	National GHG Inventories for
	EF_{elec}	0.8 *1	0.46 *2	the source of EF of natural gas. CDM Methodological tool
				"Determining the baseline
				efficiency of thermal or electric
	*1 The most recent value at the time of			energy generation systems
	validation is applied.			version02.0" for the default
	*2 The value is calculated with the equation in			efficiency for off-grid power
	the option a) above. The lower value of default			plants.
	effective CO ₂ emission factor for natural gas			
	(0.0543tCO ₂ /GJ), and the most efficient value			
	of default efficiency for off-grid gas turbine			
	systems (42%) are applied.			
EC_{CAP}	The total maximum rated capacity of			Rated capacity of all installed
	equipment of the WHR system which			equipment of the WHR system
	consumes electricity except for the capacity of			which consumes electricity
	equipment which use the electricity generated			except for the capacity of
	by itself directly			equipment which use the
				electricity generated by itself
				directly