JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Torm for submitting the proposed memoratory				
Host Country	Kingdom of Thailand			
Name of the methodology proponents	Sony Semiconductor Manufacturing Corporation			
submitting this form				
Sectoral scope(s) to which the Proposed	3. Energy demand, 4. Manufacturing industries			
Methodology applies				
Title of the proposed methodology, and	Installation of Displacement Ventilation Air			
version number	Conditioning Unit in the Cleanroom of			
	Semiconductor Manufacturing Factory, Version			
	01.0			
List of documents to be attached to this form	The attached draft JCM-PDD:			
(please check):	Additional information			
Date of completion	01/08/2017			

History of the proposed methodology

Version	Date	Contents revised	
01.0	01/08/2017	First edition as a proposed methodology	

A. Title of the methodology

Installation of Displacement Ventilation Air Conditioning Unit in the Cleanroom of Semiconductor Manufacturing Factory, Version 01.0

B. Terms and definitions

Terms	Definitions
Displacement ventilation	Air distribution technology that introduces conditioned air
	into a zone at a low velocity (less than 1.0 m/s) via diffusers
	located either at near floor level or middle space of a room
	and spreads the supply air over the floor to displace the
	warmer air from the occupied zone toward the ceiling for
	ventilation.
Displacement ventilation air	A supplying unit of conditioned air with application of
conditioning unit	displacement ventilation technology. The unit doesn't include
	outdoor-air processing units.
Mixing ventilation	A traditional air distribution technology that uses turbulent or
	laminar flow of fresh air supplied from the ceiling level so
	that mix and dilute any existing warmer air with supplied
	clean and conditioned air.
Mixing ventilation air	A supplying unit of conditioned air with application of
conditioning unit	mixing ventilation technology.
Airborne particulate cleanliness	The level of cleanliness specified by the maximum allowable
class	number of particles per cubic meter of air (per cubic foot of
	air).
Outdoor-air processing unit	The unit for processing the outdoor fresh air that is taken in
	for ventilation and/or for keeping the pressure inside a clean
	room a predetermined positive value. The unit also
	constituted of air filters and heating or cooling coils so that
	the outside air is brought to a required state of temperature,
	humidity, and cleanliness before letting the outside air in.

C. Summary of the methodology

Items	Summary			
GHG emission reduction	Installation of displacement ventilation air conditioning unit to			
measures	improve energy efficiency of supplying conditioned air to the			
	cleanroom of semiconductor plant leads to reduction of power			
	consumption for ventilation.			
Calculation of reference	Reference emissions are calculated by multiplying power			
emissions	consumption of mixing ventilation air conditioning unit, the			
	proportion of motive power of reference mixing ventilation air			
	conditioning unit and project displacement ventilation air			
	conditioning unit, and CO_2 emission factor for electricity			
	consumed.			
Calculation of project	Project emissions are calculated by multiplying total power			
emissions	consumption of displacement ventilation air conditioning unit			
	and CO ₂ emission factor for electricity consumed.			
Monitoring parameters	• The amount of power consumption by project displacement			
	ventilation air conditioning unit			
	• The amount of fuel consumption and the amount of			
	electricity generated by captive power, where applicable			

D. Eligibility criteria					
This methodo	This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	Displacement ventilation air conditioning unit, whose specification of velocity of				
	the discharged air is designed to be more than 0.5 m/s and equals to or less than				
	1.0 m/s, is installed in the cleanroom of semiconductor plant.				
Criterion 2	The project displacement ventilation air conditioning unit is constituted of at				
	least cooling coil, HEPA (high efficiency particular air) or ULPA (ultra low				
	penetration air) filter and air supply fan in one unit.				
Criterion 3	The project displacement ventilation air conditioning unit is designed to meet the				
	threshold values of Class 6 or class 7 of airborne particulate cleanliness class set				
	by ISO 14644-1:2015 ¹ .				
Criterion 4	The project displacement ventilation air conditioning unit only supplies cooled				
	air.				

¹ Cleanrooms and associated controlled environments -- Part 1: Classification of air cleanliness by particle concentration

E. Emission Sources and GHG types

Reference emissions				
Emission sources	GHG types			
Power consumption by mixing ventilation air conditioning unit	CO ₂			
Power consumption by reference outdoor-air processing unit (excluded	CO ₂			
from calculation of reference emissions)				
Power consumption by reference chiller (excluded from calculation of	CO ₂			
reference emissions)				
Power consumption by reference exhaust fan (excluded from calculation	CO ₂			
of reference emissions)				
Project emissions				
Emission sources	GHG types			
Power consumption by displacement ventilation air conditioning unit	CO ₂			
Power consumption by project outdoor-air processing unit (excluded	CO ₂			
from calculation of project emissions)				
Power consumption by project chiller (excluded from calculation of	CO ₂			
project emissions)				
Power consumption by project exhaust fan (excluded from calculation	CO ₂			
of project emissions)				

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are consisted of emissions from mixing ventilation air conditioning unit, outdoor-air processing unit and chillers supplying chilled water to cooling coil.

The temperature of outlet chilled water of the chiller is set higher (e.g. 14 degrees Celsius) with displacement ventilation air conditioning unit compared to that with mixing ventilation air conditioning unit (e.g. 7 degrees Celsius). It is because displacement ventilation air conditioning unit diffuses conditioned air at floor level or middle space of a room while mixing ventilation air conditioning unit does from air supply ports located on the ceiling. Therefore, the heat load handled by the chillers in the case of displacement ventilation gets lower, and it leads to reduction of power consumption by the chillers.

In this methodology, GHG emissions reductions of chillers caused by the difference of heat load are not included in the calculation of total GHG emission reductions to ensure the net emission

reductions.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \sum_{j} \sum_{k} \left(EC_{PJ,DV,i,j,k,p} \times \frac{L_{RE,j,k}}{L_{PJ,j,k}} \times EF_{elec,k} \right)$$

with

$$L_{RE,j,k} = \frac{P_{d,RE,j,k} \times AFR_{RE,j,k}}{1,000 \times \eta_{RE,j,k}}$$
$$L_{PJ,j,k} = \frac{P_{d,PJ,j,k} \times AFR_{PJ,j,k}}{1,000 \times \eta_{PJ,j,k}}$$
$$AFR_{RE,j,k} = \frac{V_{cr,j,k} \times T_{vent,j,k}}{3,600}$$
$$AFR_{PJ,j,k} = \sum_{i} AFR_{PJ,i,j,k}$$
$$\eta_{RE,j,k} = \eta_{PJ,j,k}$$

* Since the fans with similar type and specification are installed both in displacement ventilation air conditioning unit and mixing ventilation air conditioning unit, energy efficiency of the fans are considered to be equal.

Therefore

$$\begin{split} RE_p &= \sum_{i} \sum_{j} \sum_{k} \left(EC_{PJ,DV,i,j,k,p} \times \frac{L_{RE,j,k}}{L_{PJ,j,k}} \times EF_{elec,k} \right) \\ &= \sum_{i} \sum_{j} \sum_{k} \left(EC_{PJ,DV,i,j,k,p} \times \frac{P_{d,RE,j,k} \times AFR_{RE,j,k}}{P_{d,PJ,j,k} \times AFR_{PJ,j,k}} \times EF_{elec,k} \right) \end{split}$$

Where

RE_p	Reference emissions during the period p [tCO ₂ /p]		
$EC_{PJ,DV,i,j,k,p}$	The amount of power consumption by the project displacement ventilation air		
	conditioning unit i in cleanroom j of the project factory k during the period p		
	[MWh/p]		
$L_{RE,j,k}$	Motive power of reference mixing ventilation air conditioning unit(s)		
	supplying air to cleanroom j in the project factory k [kW]		
T	Matter and for the distribution of the distrib		

$EF_{elec,k}$	CO_2 emission factor for consumed electricity in the project factory k
	[tCO ₂ /MWh]
$P_{d,RE,j,k}$	Discharge pressure of reference mixing ventilation air conditioning unit(s)
	supplying air to cleanroom j in the project factory k [Pa]
$P_{d,PJ,j,k}$	Discharge pressure of project displacement ventilation air conditioning
	unit(s) supplying air to cleanroom j in the project factory k [Pa]
$AFR_{RE,j,k}$	Airflow rate of reference mixing ventilation air conditioning unit(s)
	supplying air to cleanroom j in the project factory k $[m^3/s]$
$AFR_{PJ,j,k}$	Airflow rate of project displacement ventilation air conditioning unit(s)
	supplying air to cleanroom j in the project factory k $[m^3/s]$
$\eta_{RE,j,k}$	Fan efficiency of reference mixing ventilation air conditioning unit(s)
	supplying air to cleanroom j in the project factory k [-]
$\eta_{PJ,j,k}$	Fan efficiency of project displacement ventilation air conditioning unit(s)
	supplying air to cleanroom j in the project factory k [-]
$V_{cr,j,k}$	Volume of the cleanroom j in the project factory k $[m^3]$
$T_{vent,j,k}$	Number of times of ventilation required for the clean room j in the project
	factory k [times/h]
$AFR_{PJ,i,j,k}$	Airflow rate of project displacement ventilation air conditioning unit i
	supplying air to cleanroom j in the project factory k $[m^3/s]$
i	Identification number of the displacement ventilation air conditioning unit
j	Identification number of the cleanroom
k	Identification number of the factory

Emissions from power consumption by reference outdoor-air processing unit(s) and project outdoor-air processing unit(s) are considered to be equal. Emissions from power consumption by reference exhaust fan(s) and project exhaust fan(s) are also considered to be equal. Therefore, both of them are not included in calculation of reference emissions and project emissions.

Emissions from power consumption by reference chiller(s) are not included in calculation of reference emissions as explained in F.1 of this methodology.

G. Calculation of project emissions

$$PE_{p} = \sum_{i} \sum_{j} \sum_{k} (EC_{PJ,DV,i,j,k,p} \times EF_{elec,k})$$

Where
$$PE_{p}$$
Project emissions during the period *p* [tCO₂/p]
$$EC_{PJ,DV,i,j,k,p}$$
The amount of power consumption by the displacement ventilation air
conditioning unit *i* in cleanroom *j* of the project factory *k* during the period *p*
[MWh/p]
$$EF_{elec,k}$$
CO₂ emission factor for consumed electricity in the project factory *k*
[tCO₂/MWh]
i
Identification number of the displacement ventilation air conditioning unit
j
Identification number of the factory
$$k$$

Emissions from power consumption by reference outdoor-air processing unit(s) and project outdoor-air processing unit(s) are considered to be equal. Emissions from power consumption by reference exhaust fan(s) and project exhaust fan(s) are also considered to be equal. Therefore, both of them are not included in calculation of reference emissions and project emissions.

Emissions from power consumption by project chiller(s) are not included in calculation of project emissions as explained in F.1 of this methodology.

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

Where

ER_p	Emission reductions during the period p [tCO ₂ /p]
RE_p	Reference emissions during the period p [tCO ₂ /p]
PE_p	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$AFR_{RE,j,k}$	Airflow rate of reference mixing ventilation	Calculated
	air conditioning unit(s) supplying air to	
	cleanroom j in the project factory k	
	Calculated with the following equation:	
	$AFR_{RE,j,k} = \frac{V_{cr,j,k} \times T_{vent,j,k}}{3,600}$	
$AFR_{PJ,j,k}$	Airflow rate of project displacement	Design document or
	ventilation air conditioning unit(s) supplying	specification document of the
	air to cleanroom j in the project factory k	displacement ventilation air
		conditioning unit.
	One value is determined <i>ex ante</i> for each	
	project cleanroom. Where outdoor-air	
	processing units are supplying air to one	
	cleanroom, the total value is applied.	
$P_{d,RE,j,k}$	Discharge pressure of reference mixing	Hearing survey with
	ventilation air conditioning unit(s) supplying	manufacturer of mixing
	air to cleanroom j in the project factory k [Pa]	ventilation air conditioning
		unit.
	The default value of [1,200] is applied.	
$P_{d,PJ,j,k}$	Discharge pressure of project displacement	Design document or
	ventilation air conditioning unit(s) supplying	specification document of the
	air to cleanroom j in the project factory k	displacement ventilation air
		conditioning unit.
	One value is determined <i>ex ante</i> for each	
	project cleanroom.	
$V_{cr,j,k}$	Volume of the cleanroom <i>j</i> in the project	Design document of the
	factory k	cleanroom.
	The value is determined by the actual volume	
	of the cleanroom where the project in	
	implemented.	
$T_{vent,j,k}$	Number of times of ventilation required for	Published documents on the
	the cleanroom j in the project factory k	web.
	The default value from the following table is	

	applied corresponding to the airborne			
	particulate cleanliness class required for the			
	cleanroom <i>j</i> .			
	cleanlin	ess class		
	ISO	FED-	T _{vent,j,k}	
	14644-1:2015	STD-209E		
	Class 6	1,000	80	
	Class 7	10,000	40	
			I	
EF _{elec,k}	CO ₂ emission fac	tor for consumed	l electricity.	[Grid electricity]
	When project of	chiller consume	s only grid	The most recent value available
	electricity or ca	ptive electricity,	the project	at the time of validation is
	participant appli	es the CO ₂ em	ission factor	applied and fixed for the
	respectively.			monitoring period thereafter.
				The data is sourced from "Grid
	When project ch	iller may consur	ne both grid	Emission Factor (GEF) of
	electricity and c	aptive electricity	, the project	Thailand", endorsed by
	participant appli	es the CO_2 em	ission factor	Thailand Greenhouse Gas
	with lower value.	vith lower value.		Management Organization
	[CO ₂ emission factor]			unless otherwise instructed by
				the Joint Committee.
	For grid electric	•		
	available from th		n this table at	[Captive electricity]
	the time of validation	ation		For the option a)
				Specification of the captive
	For captive electr	-	ined based	power generation system
	on the following	options:		provided by the manufacturer
				$(\eta_{elec} [\%]).$
	a) Calculated from	1 0		CO_2 emission factor of the
	efficiency (η_{elec}		n	fossil fuel type used in the
	manufacturer's s			captive power generation
	The power gener	-		system (EF_{fuel} [tCO ₂ /GJ])
	lower heating val		-	Fourth and 1
	power generation	-		For the option b)
	manufacturer's sp	pecification is app	plied;	Generated and supplied

FF	$3.6 \times \frac{100}{\eta_{ele}}$) 	electricity by the captive powe
El ^e lec –	$3.0 \times \eta_{ele}$	generation system (EG_{PJ})	
			[MWh/p]).
b) Calculated from	om measured	Fuel amount consumed by th	
The power gener	ation efficie	ncy calculated	captive power generation
from monitored	data of the a	mount of fuel	system $(FC_{PJ,p})$ [mass o
input for power g	generation (1	$FC_{PJ,p}$) and the	weight/p]).
amount of electric	icity generat	ed $(EG_{PJ,p})$	Net calorific value (NCV _{fu}
during the monit	oring period	p is applied. The	[GJ/mass or weight]) and CC
measurement is o	conducted w	ith the monitoring	emission factor of the fue
equipment to wh	ich calibrati	on certificate is	$(EF_{fuel} [tCO_2/GJ])$ in order of
issued by an enti	ty accredited	d under	preference:
national/internat	ional standa	rds;	1) values provided by the fue
EE EC	V NCU	$\times EF_{fuel} \times \frac{1}{EG_{PIn}}$	supplier;
$Er_{elec} = r C_{PJ,p}$	X NCV _{fuel}	$\times EF_{fuel} \times \overline{EG_{PJ,p}}$	2) measurement by the project
Where:			participants;
<i>NCV_{fuel}</i> : Net	calorific va	lue of consumed	3) regional or national defau
fuel [GJ/mass or	weight]		values;
			4) IPCC default value
Note:			provided in table 1.4 of Ch.
In case the captiv	ve electricity	generation	Vol.2 of 2006 IPCC Guideline
system meets all	of the follow	wing conditions,	on National GHG Inventorie
the value in the f	following tab	ole may be	Lower value is applied.
applied to EF_{ele}	c depending	g on the consumed	
fuel type.			[Captive electricity with diesel
			fuel]
• The system	is non-renev	wable generation	CDM approved small scale
system			methodology: AMS-I.A.
• Electricity generation capacity of the			
system is less than or equal to 15 MW			[Captive electricity with natura
			gas]
fuel type	Diesel	Natural gas	2006 IPCC Guidelines on
	fuel		National GHG Inventories for
EF _{elec}	0.8 *1	0.46 *2	the source of EF of natural gas
			CDM Methodological tool
*1 The most recent value at the time of			"Determining the baseline
validation is applied.			efficiency of thermal or electri

*2 The value is calculated with the equation in	energy generation systems
the option a) above. The lower value of default	version02.0" for the default
effective CO2 emission factor for natural gas	efficiency for off-grid power
(0.0543tCO ₂ /GJ), and the most efficient value	plants.
of default efficiency for off-grid gas turbine	
systems (42%) are applied.	