Joint Crediting Mechanism Approved Methodology TH_AM002 "Energy Saving by Introduction of Multi-stage Oil-Free Air Compressor"

A. Title of the methodology

1

Energy Saving by Introduction of Multi-stage Oil-Free Air Compressor, Version $\frac{24}{2}$.0

B. Terms and definitions

Terms	Definitions	
Multi-stage oil-free air	A device with more than one compression stage without	
compressor	using lubricating oil to compress air, nitrogen or inert gases	
	to make the pressure of gas higher than that of the inlet.	
Specific conditions	The specific conditions for this methodology are defined as	
	below, following ISO 1217:2009.	
	Ambient temperature = 20 degrees Celsius,	
	Ambient pressure = 0 MPa (Gauge pressure),	
	Relative humidity $= 0\%$,	
	Cooling water/air = 20 degrees Celsius,	
	Effective working pressure at discharge value $= 0.7$ MPa	
	(Gauge pressure).	
Free air delivery (FAD)	The actual quantity of compressed air converted to the inlet	
	conditions of the compressor. The unit is m ³ /min.	
Periodical check	A periodical investigation of air compressor conducted by	
	manufacturer or agent who is authorized by the manufacturer,	
	in order to maintain air compressor performance.	
Specific power (SP)	An indicator of efficiency of air compressor, calculated with	
	electric motor power (nominal output power) [kW] and free	
	air delivery [m ³ /min]	
	$SP = \frac{Motor power [kW]}{FAD [m^3/min]}$	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims at saving	
measures	energy by introducing multi-stage oil-free air compressor in	
	manufacturing process of semiconductors.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	air compressor, calculated with power consumption of project	
	air compressor, specific power (SP) of reference/project air	
	compressors and CO ₂ emission factor for electricity consumed.	
Calculation of project	Project emissions are GHG emissions from using project air	
emissions	compressor, calculated with power consumption of project air	
	compressor and CO ₂ emission factor for electricity consumed.	
Monitoring parameters	• Power consumption of project air compressor	
	• The amount of fuel consumed and the amount of electricity	
	generated by captive power, where applicable.	

D. Eligibility criteria		
This methodology is applicable to projects that satisfy all of the following criteria.		
Criterion 1	Project air compressor is a non-inverter type multi-stage oil-free air compressor	
	with an electric motor power of 55kW, 75kW, 110kW, 132kW, 145kW, 160kW,	
	or 200kW installed in manufacturing process of semiconductors.	
Criterion 2	Periodical check is planned more than one (1) time annually.	

E. Emission Sources and GHG types

1

Reference emissions		
Emission sources	GHG types	
Electricity consumption by air compressor	CO ₂	
Project emissions		
Emission sources	GHG types	
Electricity consumption by air compressor	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project air compressor, specific power (SP) for reference/project air compressors, and CO₂ emission factor for electricity consumed.

SP of reference air compressor is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The most efficient value is selected for each motor power of air compressors from the collected SP values available in Thai market and determined as the reference SP.
- 2. The value of SP is defined as $SP_{RE,sc,i}$ described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (SP_{RE,sc,i} \div SP_{PJ,sc,i}) \times EF_{elec} \}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project air compressor *i* during the period *p* [MWh/p]

 $SP_{PI,sc,i}$: SP of project air compressor *i* calculated under the specific conditions [kW·min/m³]

 $SP_{RE,sc,i}$: SP of reference air compressor *i* under the specific conditions [kW·min/m³]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project air compressor *i* during the period *p* [MWh/p]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}$	$E_p - PE_p$
--	--------------

- ER_p : Emission reductions during the period p [tCO₂/p]
- RE_p : Reference emissions during the period p [tCO₂/p]
- PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source	
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]	
	When project air compressor consumes only	The most recent value available	
	grid electricity or captive electricity, the	at the time of validation is	
	project participant applies the CO ₂ emission	applied and fixed for the	
	factor respectively.	monitoring period thereafter.	
		The data is sourced from "Grid	
	When project air compressor may consume	Emission Factor (GEF) of	
	both grid electricity and captive electricity, the	Thailand", endorsed by	
	project participant applies the CO ₂ emission	Thailand Greenhouse Gas	
	factor with lower value.	Management Organization	
		unless otherwise instructed by	
	[CO ₂ emission factor]	the Joint Committee.	
	For grid electricity: The most recent value		
	available from the source stated in this table at	[Captive electricity]	
	the time of validation	For the option a)	
		CDM approved small scale	
	For captive electricity, it is determined based	methodology: AMS-I.A	
	on the following options:		
		For the option b)	
	a) 0.8*_	Specification of the captive	
	*The most recent value available from CDM-	power generation system	
	approved small scale methodology AMS-I.A-	provided by the manufacturer	
	at the time of validation is applied.	$(\eta_{elec} [\%]).$	
		CO ₂ emission factor of the	
	\underline{ab}) Calculated from its power generation	fossil fuel type used in the	
	efficiency (η_{elec} [%]) obtained from	captive power generation	
	manufacturer's specification	system (EF _{fuel} [tCO ₂ /GJ])	

and

supplied

For the option <u>be</u>)

Generated

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

be) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period *p* is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

Diesel

fuel

fuel type

electricity by the captive power generation system (EG_{PJ,p} [MWh/p]). Fuel amount consumed by the captive power generation system (FC_{PJ,p} [mass or weight/p]). Net calorific value (NCV_{fuel} [GJ/mass or weight]) and CO₂ emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference: 1) values provided by the fuel supplier; 2) measurement by the project

participants;

regional or national default values;

 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel] fuel]

<u>CDM approved small scale</u> methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on

National GHG Inventories for

Natural gas

			the source of EF of natural gas.
	EF _{elec} <u>0.8 *1</u>	<u>0.46_*2</u>	CDM Methodological tool
			"Determining the baseline
	*1 The most recent value at the time of validation is applied.		efficiency of thermal or electric
			energy generation systems
	*2 The value is calculated with	th the equation in	version02.0" for the default
	the option a) above. The lowe	er value of default	efficiency for off-grid power
	effective CO2 emission factor	<mark>for natural gas</mark>	plants.
	(0.0543 tCO ₂ /GJ), and the mo	ost efficient value	plants.
	of default efficiency for off-g	rid gas turbine	
	systems (42%) are applied.		
SP _{RE,sc,i}	The SP of the reference air	compressor <i>i</i> for	Specifications of project air
	each motor power is set as a	a default value in	compressor <i>i</i> prepared for the
	this methodology as shown in	the table below.	quotation or factory acceptance
			test data by manufacturer.
	Motor Power [kW]	Reference SP	
	55	5.73	The default SP value is derived
	75	6.00	from the result of survey on SP
	110	5.67	of non-inverter oil-free air
	132	5.84	compressors from
	145	6.14	manufacturers that have high
	160	5.65	market share in Thailand.
		5.49	
			The SP _{RE,sc,i} is revised if
	It is noted that the SP value is	s calculated under	necessary from survey result
	the specific conditions		which is conducted by JC or
			project participants every three
			years.
SP _{PJ,i}	SP of project air compressor	<i>i</i> under the	Specifications of project air
	project specific conditions.		compressor <i>i</i> prepared for the
			quotation or factory acceptance
			test data by manufacturer.
		SP of project air compressor <i>i</i> under the	
SP _{PJ,sc,i}	SP of project air compressor	i under the	Specifications of project air
SP _{PJ,sc,i}	SP of project air compressor a specific conditions is calculat		Specifications of project air compressor <i>i</i> prepared for the
SP _{PJ,sc,i}			

l

	г k-1 т	
	$SP_{PJ,sc,i} = SP_{PJ,i} \times \frac{T_{s,PJ,sc,i}}{T_{s,PJ,i}} \times \left[\left(\frac{P_{d,PJ,sc,i}}{P_{s,PJ,sc,i}} \right)^{\frac{\kappa-1}{m_ik}} - 1 \right]$	
	$\div \left[\left(\frac{P_{d,PJ,i} + 0.101}{P_{s,PJ,i}} \right)^{\frac{k-1}{m_i k}} - 1 \right]$	
	k: Heat capacity ratio (Dried Air) = 1.4	
	m_i : Number of compression stages of project air	
	compressor <i>i</i>	
	$P_{s,P,I,i}$: Suction pressure of project air compressor <i>i</i> under	
	the project specific conditions [MPa(abs)] (Default value	
	is set at atmospheric pressure = 0.101[MPa(abs)])	
	$P_{s,PI,sc,i}$: Suction pressure of project air compressor <i>i</i>	
	under the specific conditions [MPa(abs)] (Default value	
	is set at atmospheric pressure = 0.101[MPa(abs)])	
	$T_{s,PI,i}$: Suction temperature of project air compressor <i>i</i>	
ī	under the project specific conditions [K] (Value from the	
j	product catalogue or manufacturer's specification)	
	$T_{s,PJ,sc,i}$: Suction temperature of project air compressor <i>i</i>	
1	under the specific conditions [K] (Default value is set at	
	293.0[K])	
	$P_{d,PJ,i}$: Discharge pressure of project air compressor <i>i</i>	
1	under the project specific conditions [MPa(Gauge	
1	pressure)] (Value from the product catalogue or	
:	manufacturer's specification)	
	$P_{d,PJ,sc,i}$: Discharge pressure of project air compressor <i>i</i>	
1	under the specific conditions [MPa(abs)] (=	
	0.101[MPa(abs)] + 0.7 [MPa(Gauge pressure)] =	
	0.801[MPa(abs)])	

History of the document

l

Version	Date	Contents revised
1.0	23 August 2016	Decision by the Joint Committee. Initial approval.
<u>2.0</u>	<u>1 August 2017</u>	 <u>Modifications to add conditions to apply 0.8 or 0.47 as a</u> <u>CO₂ emission factor for captive electricity</u>