JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand	
Name of the methodology proponents	Toray Industries Inc.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	d Installation of energy saving air jet loom at textile	
version number	factory, Version 1.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
	Appendix 1: Additional information to the	
	proposed JCM methodology "Installation of	
	energy saving air jet loom at textile factory"	
Date of completion	01/08/2017	

History of the proposed methodology

Version	Date	Contents revised
1.0	01/08/2017	First edition

A. Title of the methodology

Installation of energy saving air jet loom at textile factory, Version 1.0

B. Terms and definitions

Terms	Definitions	
Air jet loom	A loom which uses a jet of air to propel the weft yarn through	
	the shed	
Specific electricity consumption	Amount of electricity to generate one unit of compressed air	
of the air compressors		
Specific air consumption of the	Amount of compressed air to weave one unit of fabric	
air jet loom		

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Replacement of existing air jet looms at textile factory with the	
measures	ones equipped with energy saving technology reduces	
	compressed air consumption and leads to reducing electricity	
	consumption by the compressor, and consequently GHG	
	emission reductions.	
Calculation of reference	Reference emissions are calculated with amount of fabric	
emissions	produced in the project, the specific air consumption of the	
	project air jet loom, reduction rate of air consumption, the	
	specific electricity consumption of the air compressors and CO ₂	
	emission factor for electricity consumed.	
Calculation of project	Project emissions are calculated with amount of fabric	
emissions	produced in the project, the specific air consumption of the	
	project air jet loom, the specific electricity consumption of the	
	air compressors and CO ₂ emission factor for electricity	
	consumed.	
Monitoring parameters	Amount of fabric woven in the project	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project replaces existing air jet looms at a weaving factory with air jet looms	
	equipped with energy saving technologies such as an optimized shape reed's	
	tunnel of nozzles and a pressure sensor to measure air pressure of nozzles for	
	optimization of compressed air consumption of welt insertion.	
Criterion 2	The air jet looms which are installed by the project reduce the specific air	
	consumption by at least 15% compared with the reference air jet looms in line	
	with the description in Section I of this methodology.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by air compressors to generate compressed air	CO_2	
for the reference air jet looms		
Project emissions		
Emission sources	GHG types	
Electricity consumption by air compressors to generate compressed air	CO_2	
for the project air jet looms		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with the following parameters:

- Amount of fabric produced in the project at each project factory [m/p], which is expressed
 as the amount of fabric produced as per the project air jet loom type which is determined
 by, for example, a model of the project air jet loom by the manufacturer during the
 monitoring period;
- Specific air consumption as per the project air jet loom type at each project factory [Nm³/m], which is expressed as amount of compressed air to weave one unit of fabric;
- Reduction rate of specific air consumption at each project factory [%], which is expressed as the average of reduction rates of specific air consumptions by the project air jet loom

to specific air consumptions by the reference air jet loom as per fabric type;

- Specific electricity consumption of the air compressors at each project factory [kWh/Nm³], which is expressed as amount of electricity to generate one unit of compressed air; and
- CO₂ emission factor for electricity consumed [tCO₂/kWh].

Net emission reductions are achieved by setting specific air consumption as per the project air jet loom type at each project factory at a minimum value in line with the description in Section I of this methodology.

Specific electricity consumption of the compressor(s) is recalculated in line with Section I below if any of the existing compressors is replaced with a new one, or the configuration of compressors connected to supply compressed air to the project air jet looms is changed at the time of or after registration of the project.

F.2. Calculation of reference emissions

$$RE_p = \sum_{j} \left(SEC_j \times \sum_{i} (SAC_{PJ,i,j} \times AP_{PJ,i,j,p}) \div \left(1 - \frac{RR_{i,j}}{100} \right) \times EF_{elec,j} \right)$$

Where:

 RE_n : Reference emissions during the period p [tCO₂/p]

 SEC_i : Specific electricity consumption of the air compressors at the project factory

 $i [kWh/Nm^3]$

 $SAC_{PI.i.i}$: Specific air consumption of the project air jet loom type i at the project factory

j [Nm³/m]

 $RR_{i,i}$: Reduction rate of specific air consumption of the project air jet loom type i

at the project factory *j* [%]

 $AP_{PIi,ip}$: Amount of fabric woven by the project air jet loom type i at the project factory

j during the period p [m/p]

 $EF_{elec,j}$: CO₂ emission factor for consumed electricity at the project factory j

[tCO₂/kWh]

i : Identification number of the project air jet loom type, differentiated according

to, for example, models

: Identification number of the project factory j

G. Calculation of project emissions

$$PE_{p} = \sum_{j} \left(SEC_{j} \times \sum_{i} (SAC_{PJ,i,j} \times AP_{PJ,i,j,p}) \times EF_{elec,j} \right)$$

Where:

 PE_p : Project emissions during the period p [tCO₂/p]

 SEC_i : Specific electricity consumption of the air compressors at the project factory j

[kWh/Nm³]

 $SAC_{PJ,i,j}$: Specific air consumption of the project air jet loom type i at the project factory

j [Nm³/m]

: Amount of fabric woven at the project air jet loom type i at the project factory

j during the period p [m/p] $EF_{elec,j} \qquad : \ \, \mathrm{CO}_2 \ \, \mathrm{emission} \ \, \mathrm{factor} \ \, \mathrm{for} \ \, \mathrm{consumed} \ \, \mathrm{electricity} \ \, \mathrm{at} \ \, \mathrm{the} \, \, \mathrm{project} \, \, \mathrm{factory} \, \, j$

[tCO₂/kWh]

: Identification number of the project air jet loom type, differentiated according

to, for example, models

: Identification number of the project factory j

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

Where:

 ER_{v} : Emission reductions during the period p [tCO₂/p] RE_n : Reference emissions during the period p [tCO₂/p]

 PE_{p} : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
SEC_j	Specific electricity consumption of the air	Performance curve of
	compressors at the project factory <i>j</i> [kWh/Nm ³]	the air compressors from
		their manufacturers
	The default value is fixed ex ante for each project by	
	the project participant.	
	SEC_j is calculated from the linear function of shaft	
	power [kW] and generated compressed air [Nm³/h] of	
	the compressors which are used to supply compressed	
	air to the project air jet looms at the project factory j ,	
	assuming that the compressor is operating at the	
	highest efficiency, determined from the performance	
	curve of the compressors.	
	In case that multiple air compressors are used at the	
	project factory, the most conservative value (i.e. the	
	highest efficiency) is selected as the default value	
	regardless of the capacity or the model of the	
	compressors.	
	In case that any of the existing compressors is	
	replaced with a new compressor, or the configuration	
	of compressors connected to supply compressed air to	
	the project air jet looms of the project is changed	
	after registration, SEC_j for the corresponding factory	
	is recalculated in the same manner described above.	
$SAC_{PJ,i,j}$	Specific air consumption of the project air jet loom	Experimental data from
	type i at the project factory j [Nm ³ /m]	the manufacture of the
		project air jet looms
	The default value is fixed as the minimum value of	
	air consumption by the project air jet loom type,	
	based on the data collected for the all fabric types	

woven at the project site as per the factory by experimental data from the manufacture of the project air jet looms (e.g., consumption of compressed air and amount of fabric woven). In the case that only one fabric type is woven at the project factory, multiple data (at least two) of the corresponding fabric type are collected. In determining the default value, the fabric type woven at the project factory is categorized preceding the installation of the project air jet loom. Fabric type is defined by the value calculated by weft density multiplied by fabric width. The choice of fabric type is explained by, for example, the most recent fabric production inventory or production plan of the factory before the start date of project operation. The fabric is regarded as the same type if the variation of the value calculated as indicated above within one category of fabric type does not differ by more than plus or minus 5% in the value of fabric type. In case several fabric types are within the 5% range, choose the closest one to the fabric type woven by the project. $RR_{i,j}$ Reduction rate of specific air consumption of the Based on project and project air jet loom type i at the project factory j [%] reference specific air consumption collected The value is fixed as an average of reduction rate of as per the project specific air consumption for each fabric type woven as per project air-jet loom type in the project factory. Reduction rate of specific air consumption is calculated for each project as per a project air jet loom type at the project factory in the following manner: - The reference air jet looms are defined as one of the

following whichever is produced at a later date:

1) the previous model of air jet looms produced by
the same manufacture of the project air jet loom by
one generation (e.g. a substantial model change
which leads to reduction of air consumption)

2) existing air jet looms in the project factory

- Collect dataset of specific air consumption by reference air jet looms (SAC_{RE})
- 1) for the previous model of air jet looms, in a same manner as to that of the project air jet looms in line with this Section
- 2) for the existing air jet looms, in a same manner as to that of the project air jet looms in line with this Section except data of consumption of compressed air and amount of fabric woven. These data are directly measured with measuring equipment at the existing air jet looms in a same manner as to that of the project air jet looms.
- Compare the specific air consumption of reference air jet looms to that of project air jet looms as per the fabric type and calculate the reduction rate as following manner:

Calculate reduction rates of specific air consumption comparing that of the project air jet loom and the reference air jet loom according to the categories of fabric type established above and average the derived values. Reduction rate of specific air consumption of the project air jet loom type i at the project factory j is expressed by the following formula, where i, j and k are suffixes denoting air jet loom type, factory and fabric type.

power generation system

		I
	$RR_{i,j} = \frac{1}{m} \sum_{k=1}^{m} \left[(1 - \frac{SAC_{PJ,i,j,k}}{SAC_{RE,j,k}}) \times 100 \right]$	
$EF_{elec,j}$	CO ₂ emission factor for consumed electricity in the	[Grid electricity]
	project factory <i>j</i> [tCO ₂ /kWh]	The most recent value
		available at the time of
	When only grid electricity or captive electricity is	validation is applied and
	consumed in the project factory, the project participant	fixed for the monitoring
	applies the CO ₂ emission factor respectively.	period thereafter. The
		data is sourced from
	When both grid electricity and captive electricity may	"Grid Emission Factor
	be consumed in the project factory, the project	(GEF) of Thailand",
	participant applies the CO ₂ emission factor with lower	endorsed by Thailand
	value.	Greenhouse Gas
		Management
	[CO ₂ emission factor]	Organization unless
	For grid electricity: The most recent value available	otherwise instructed by
	from the source stated in this table at the time of	the Joint Committee.
	validation	
		[Captive electricity]
	For captive electricity, it is determined based on the	For the option a)
	following options:	Specification of the
		captive power
	a) Calculated from its power generation efficiency	generation system
	$(\eta_{elec} [\%])$ obtained from manufacturer's specification	provided by the
	The power generation efficiency based on lower	manufacturer (η_{elec} [%]).
	heating value (LHV) of the captive power generation	CO ₂ emission factor of
	system from the manufacturer's specification is	the fossil fuel type used
	applied;	in the captive power
	$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	generation system (EF_{fuel}
	η_{elec}	[tCO ₂ /GJ])
	b) Calculated from measured data	For the option b)
	The power generation efficiency calculated from	Generated and supplied
	monitored data of the amount of fuel input for power	electricity by the captive

generation $(FC_{PJ,p})$ and the amount of electricity

generated $(EG_{PJ,p})$ during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF_{elec}	0.8 *1	0.46 *2

- *1 The most recent value at the time of validation is applied.
- *2 The value is calculated with the equation in the option a) above. The lower value of default effective CO₂ emission factor for natural gas (0.0543tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.

 $(EG_{PJ,p} [MWh/p]).$

Fuel amount consumed by the captive power generation system $(FC_{PJ,p} \text{ [mass or weight/p]}).$

Net calorific value (NCV_{fuel} [GJ/mass or weight]) and CO₂ emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in table 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel]
CDM approved small scale methodology:
AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the

	source of EF of natural
	gas.
	CDM Methodological
	tool "Determining the
	baseline efficiency of
	thermal or electric
	energy generation
	systems version02.0" for
	the default efficiency for
	off-grid power plants.