JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand			
Name of the methodology proponents	Sony Corporate Services (Japan) Corporation			
submitting this form				
Sectoral scope(s) to which the Proposed	3. Energy demand			
Methodology applies				
Title of the proposed methodology, and	Energy Saving by Introduction of High			
version number	Efficiency Centrifugal Chiller, Version 1.0			
List of documents to be attached to this form	☐The attached draft JCM-PDD:			
(please check):	⊠Additional information			
Date of completion	05/08/2016			

History of the proposed methodology

Version	Date	Contents revised
1.0	05/08/2016	First edition

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Centrifugal Chiller, Version 1.0

B. Terms and definitions

Terms	Definitions				
Inverter type centrifugal chiller	An inverter type centrifugal chiller is a chiller which contains				
	inverter, an apparatus to control the speed of the compressor				
	motor in order to maintain the ambient temperature, and				
	includes a centrifugal compressor.				
Non-inverter type centrifugal	A non-inverter type centrifugal chiller is a chiller which				
chiller	includes a centrifugal compressor but does not contain				
	inverter.				
Cooling capacity	Cooling capacity is the ability of individual chiller to remove				
	heat. In this methodology, "cooling capacity" is used to				
	represent a cooling capacity per one chiller unit and not for a				
	system with multiple chiller units.				
Periodical check	Periodical check is a periodical investigation of chiller done				
	by manufacturer or agent who is authorized by the				
	manufacturer, in order to maintain chiller performance.				

C. Summary of the methodology

Items	Summary		
GHG emission reduction	This methodology applies to the project that aims for saving		
measures	energy by introducing high efficiency centrifugal chiller for the		
	target factory, commerce facilities etc. in Thailand.		
Calculation of reference	Reference emissions are GHG emissions from using reference		
emissions	chiller, calculated with power consumption of project chiller,		
	ratio of COPs (Coefficient Of Performance) of reference/project		
	chillers and CO ₂ emission factor for electricity consumed.		
Calculation of project	Project emissions are GHG emissions from using project chiller,		
emissions	calculated with power consumption of project chiller and CO ₂		

	emission factor for electricity consumed.			
Monitoring parameter	•	Power consumption of project chiller		
	•	The amount of fuel consumed and the amount of electricity		
	generated by captive power, where applicable.			

D. Eligibility criteria

Criterion 1

This methodology is applicable to projects that satisfy all of the following criteria.

	to 1,500 USRt.
	* 1 USRt = 3.52 kW
Criterion 2	COP for project chiller <i>i</i> calculated under the standardizing temperature
	conditions* (COP _{PJ,tc,i}) is more than the threshold COP values set in the tables
	below. ("x" in the table represents cooling capacity per unit.)

Project chiller is a centrifugal chiller with a capacity which is less than or equals

For the project chiller of non-inverter type:

	Cooling capacity per unit (USRt)		
	250≤x<400	400≤x≤1,220	
Threshold COP value	5.67	6.19	

For the project chiller of inverter type:

	Cooling capacity per unit (USRt)					
	300≤x≤450 450 <x≤550 55<="" th=""><th>550<x≤825< th=""><th>825<x≤1,500< th=""></x≤1,500<></th></x≤825<></th></x≤550>		550 <x≤825< th=""><th>825<x≤1,500< th=""></x≤1,500<></th></x≤825<>	825 <x≤1,500< th=""></x≤1,500<>		
Threshold COP value	5.59	5.69	5.85	6.06		

 ${\rm COP_{PJ,tc,i}}$ is calculated by altering the temperature conditions of COP of project chiller i (COP_{PJ,i}) from the project specific conditions to the standardizing conditions. ${\rm COP_{PJ,i}}$ is derived from specifications prepared for the quotation or factory acceptance test data by manufacturer.

[equation to calculate COP_{PJ,tc,i}]

$$\begin{aligned} \text{COP}_{\text{PJ,tc,i}} &= \text{COP}_{\text{PJ,i}} \times [(T_{\text{cooling-out,i}} - T_{\text{chilled-out,i}} + TD_{\text{chilled}} + TD_{\text{cooling}}) \\ &\quad \div (37 - 7 + TD_{\text{chilled}} + TD_{\text{cooling}})] \\ &\quad \text{COP}_{\text{PJ,tc,i}} &\quad \text{: COP of project chiller } \textit{i} \text{ calculated under the standardizing} \\ &\quad \text{temperature conditions* [-]} \end{aligned}$$

	$COP_{PI,i}$: COP of project chiller i under the project specific conditions					
	,	[-]					
	T _{cooling-out,i}	: Output cooling water temperature of project chiller <i>i</i> set					
		under the project specific conditions [degree Celsius]					
	$T_{chilled-out,i}$: Output chilled water temperature of project chiller <i>i</i> set					
		under the project specific conditions [degree Celsius]					
	$TD_{cooling}$: Temperature difference between condensing temperature					
		of refrigerant and output cooling water temperature					
		1.5 degree Celsius set as a default value [degree Celsius]					
	$TD_{chilled}$: Temperature difference between evaporating temperature					
		of refrigerant and output chilled water temperature,					
		1.5 degree Celsius set as a default value [degree Celsius]					
	*The standardizii Chilled w	ng temperature conditions to calculate COP _{PJ,tc,i} rater: output 7 degrees Celsius					
	G 1:	input 12 degrees Celsius					
	Cooling v	vater: output 37 degrees Celsius input 32 degrees Celsius					
Criterion 3	Periodical check	is planned more than one (1) time annually.					
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is						
	zero.						
Criterion 5	A plan for not re	eleasing refrigerant used for project chiller is prepared. In the					
	case of replacing	the existing chiller with the project chiller, a plan is prepared in					
	which refrigerant	used in the existing chiller is not released to the air e.g. re-use					
	of the equipmen	t. Execution of the prevention plan is checked at the time of					
	verification, in	order to confirm that refrigerant used for the existing one					
	replaced by the p	roject is not released to the air.					

E. Emission Sources and GHG types

Reference emissions				
Emission sources GHG typ				
Power consumption by reference chiller	CO_2			
Project emissions				
Emission sources	GHG types			
Power consumption by project chiller	CO_2			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference COP value varies by its cooling capacity.
- 2. The maximum values of COP in each cooling capacity range set for this methodology are defined as $COP_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_p = \sum_i \{ EC_{PJ,i,p} \times \left(COP_{PJ,tc,i} \div COP_{RE,i} \right) \times EF_{elec} \}$$

RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

 $COP_{PJ,tc,i}$: COP of project chiller *i* calculated under the standardizing temperature conditions

COP_{RE.i}: COP of reference chiller *i* under the standardizing temperature conditions [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_i \bigl(EC_{PJ,i,p} \times EF_{elec}\bigr)$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p \\$

 ER_{p} : Emission reductions during the period p [tCO₂/p] RE_{p} : Reference emissions during the period p [tCO₂/p] PE_{p} : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project chiller consumes only grid electricity	The most recent value
	or captive electricity, the project participant applies	available at the time of
	the CO ₂ emission factor respectively.	validation is applied and
		fixed for the monitoring
	When project chiller may consume both grid	period thereafter. The
	electricity and captive electricity, the project	data is sourced from
	participant applies the CO ₂ emission factor with	"Grid Emission Factor
	lower value.	(GEF) of Thailand",
		endorsed by Thailand
	[CO ₂ emission factor]	Greenhouse Gas
	For grid electricity: The most recent value available	Management
	from the source stated in this table at the time of	Organization unless
	validation	otherwise instructed by
		the Joint Committee.
	For captive electricity, it is determined based on the	
	following options:	[Captive electricity]
		For the option a)
	a) 0.8*	CDM approved small
	*The most recent value available from CDM	scale methodology:
	approved small scale methodology AMS-I.A at the	AMS-I.A
	time of validation is applied.	
		For the option b)
	b) Calculated from its power generation efficiency	Specification of the
	(η _{elec} [%]) obtained from manufacturer's	captive power generation
	specification	system provided by the
	The power generation efficiency based on lower	manufacturer (η_{elec} [%]).

heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

c) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

 CO_2 emission factor of the fossil fuel type used in the captive power generation system (EF_{fuel} [tCO₂/GJ])

For the option c)

Generated and supplied electricity by the captive power generation system (EG_{PJ,p} [MWh/p]).

Fuel amount consumed by the captive power generation system (FC $_{PJ,p}$ [mass or weight/p]).

Net calorific value and $(NCV_{fuel} \ [GJ/mass \ or weight])$ CO_2 emission factor of the fuel $(EF_{fuel} \ [tCO_2/GJ])$ in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in table 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

 $COP_{RE,i}$

The COP of the reference chiller i is selected from the default COP value in the following tables in line with non-inverter/inverter type and cooling capacity of the project chiller i. ("x" in the table represents

Specifications of project chiller *i* prepared for the quotation or factory acceptance test data by

	cooling capacity per unit.)							manufacturer.
	Non-inverter type Cooling capacity per unit (USRt) 250≤x<400 400≤x≤1,220					The default COP values are derived from the result of survey on COP of chillers from manufacturers that have high market share. The survey should prove the		
	COP	RE,i		5.67	6.19			use of clear methodology. The $COP_{RE,i}$ should be
				Inverter t	ype			revised if necessary from
			(ty per unit (US	Rt)		survey result which is
		300≤x:	≤450	450 <x≤550< th=""><th>550<x≤825< th=""><th>825</th><th><x≤1,500< th=""><th>conducted by JC or</th></x≤1,500<></th></x≤825<></th></x≤550<>	550 <x≤825< th=""><th>825</th><th><x≤1,500< th=""><th>conducted by JC or</th></x≤1,500<></th></x≤825<>	825	<x≤1,500< th=""><th>conducted by JC or</th></x≤1,500<>	conducted by JC or
	COP _{RE,i}	5.5	9	5.69	5.85		6.06	project participants every three years.
COP _{PJ,i}	The COP of project chiller <i>i</i> under the project specific conditions.						project	Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer
T _{cooling-out,i}	Output	cooling	g wa	ter tempera	ature of pro	ject	chiller i	Specifications of project
	set under the project specific conditions.						chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer	
T _{chilled-out,i}	Output chilled water temperature of project chiller i						Specifications of project	
	set under the project specific conditions.					chiller <i>i</i> prepared for the quotation or factory acceptance test data by		
							manufacturer	