JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand	
Name of the methodology proponents	Sony Corporate Services (Japan) Corporation	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introduction of Multi-stage	
version number	Oil-Free Air Compressor, Version 1.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
	Appendix 1: Additional Information on the	
	Proposed Methodology "Energy Saving by	
	Introduction of Multi-stage Oil-Free Air	
	Compressor"	
Date of completion	02/08/2016	

History of the proposed methodology

Version	Date	Contents revised
1.0	02/08/2016	First edition

A. Title of the methodology

Energy Saving by Introduction of Multi-stage Oil-Free Air Compressor, Version 1.0

B. Terms and definitions

Terms	Definitions
Multi-stage oil-free air	A device with more than one compression stage without
compressor	using lubricating oil to compress air, nitrogen or inert gases
	to make the pressure of gas higher than that of the inlet.
Specific conditions	The specific conditions for this methodology are defined as
	below, following ISO 1217:2009.
	Ambient temperature = 20 degrees Celsius,
	Ambient pressure = 0 MPa (Gauge pressure),
	Relative humidity = 0% ,
	Cooling water/air = 20 degrees Celsius,
	Effective working pressure at discharge valve = 0.7 MPa
	(Gauge pressure).
Free air delivery (FAD)	The actual quantity of compressed air converted to the inlet
	conditions of the compressor. The unit is m ³ /min.
Periodical check	A periodical investigation of air compressor conducted by
	manufacturer or agent who is authorized by the manufacturer,
	in order to maintain air compressor performance.
Specific power (SP)	An indicator of efficiency of air compressor, calculated with
	electric motor power (nominal output power) [kW] and free
	air delivery [m³/min]
	$SP = \frac{Motor\ power\ [kW]}{FAD\ [m^3/min]}$

C. Summary of the methodology

Items		Summary	
GHG emission	reduction	This methodology applies to the project that aims at saving	
measures		energy by introducing multi-stage oil-free air compressor in	

	manufacturing process of semiconductors.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	air compressor, calculated with power consumption of project	
	air compressor, specific power (SP) of reference/project air	
	compressors and CO ₂ emission factor for electricity consumed.	
Calculation of project	Project emissions are GHG emissions from using project air	
emissions	compressor, calculated with power consumption of project air	
	compressor and CO ₂ emission factor for electricity consumed.	
Monitoring parameters	Power consumption of project air compressor	
	The amount of fuel consumed and the amount of electricity	
	generated by captive power, where applicable.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project air compressor is a non-inverter type multi-stage oil-free air compressor
	with an electric motor power of 55kW, 75kW, 110kW, 132kW, 145kW, 160kW,
	or 200kW installed in manufacturing process of semiconductors.
Criterion 2	Periodical check is planned more than one (1) time annually.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by air compressor	CO_2	
Project emissions		
Emission sources	GHG types	
Electricity consumption by air compressor	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project air compressor, specific power (SP) for reference/project air compressors, and CO₂ emission factor

for electricity consumed.

SP of reference air compressor is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The most efficient value is selected for each motor power of air compressors from the collected SP values available in Thai market and determined as the reference SP.
- 2. The value of SP is defined as SP_{RE,sc,i} described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times \left(SP_{RE,\text{SC},i} \div SP_{PJ,\text{SC},i} \right) \times EF_{elec} \}$$

 RE_n : Reference emissions during the period p [tCO₂/p]

 $EC_{PLi,p}$: Power consumption of project air compressor i during the period p [MWh/p]

 $SP_{PI,sc,i}$: SP of project air compressor *i* calculated under the specific conditions [kW·min/m³]

 $SP_{RE,SC,i}$: SP of reference air compressor i under the specific conditions [kW·min/m³]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_i \bigl(EC_{PJ,i,p} \times EF_{elec}\bigr)$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project air compressor i during the period p [MWh/p]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

 ER_n : Emission reductions during the period p [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project air compressor consumes only	The most recent value available
	grid electricity or captive electricity, the	at the time of validation is
	project participant applies the CO ₂ emission	applied and fixed for the
	factor respectively.	monitoring period thereafter.
		The data is sourced from "Grid
	When project air compressor may consume	Emission Factor (GEF) of
	both grid electricity and captive electricity, the	Thailand", endorsed by
	project participant applies the CO ₂ emission	Thailand Greenhouse Gas
	factor with lower value.	Management Organization
		unless otherwise instructed by
	[CO ₂ emission factor]	the Joint Committee.
	For grid electricity: The most recent value	
	available from the source stated in this table at	[Captive electricity]
	the time of validation	For the option a)
		CDM approved small scale
	For captive electricity, it is determined based	methodology: AMS-I.A
	on the following options:	
		For the option b)
	a) 0.8*	Specification of the captive
	*The most recent value available from CDM	power generation system
	approved small scale methodology AMS-I.A	provided by the manufacturer
	at the time of validation is applied.	(η _{elec} [%]).
		CO ₂ emission factor of the
	b) Calculated from its power generation	fossil fuel type used in the
	efficiency (η_{elec} [%]) obtained from	captive power generation
	manufacturer's specification	system (EF _{fuel} [tCO ₂ /GJ])
	The power generation efficiency based on	
	lower heating value (LHV) of the captive	For the option c)

power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

c) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

Generated and supplied electricity by the captive power generation system $(EG_{PJ,p} [MWh/p])$.

Fuel amount consumed by the captive power generation system (FC_{PJ,p} [mass or weight/p]).

Net calorific value and $(NCV_{fuel} \ [GJ/mass \ or \ weight])$ CO_2 emission factor of the fuel $(EF_{fuel} \ [tCO_2/GJ])$ in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values:
- 4) IPCC default values provided in table 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

 $SP_{RE,sc,i}$

The SP of the reference air compressor i for each motor power is set as a default value in this methodology as shown in the table below.

Motor Power [kW]	Reference SP
55	5.73
75	6.00
110	5.67
132	5.84
145	6.14
160	5.65
200	5.49

Specifications of project air compressor *i* prepared for the quotation or factory acceptance test data by manufacturer.

The default SP value is derived from the result of survey on SP of non-inverter oil-free air compressors from manufacturers that have high market share in Thailand.

The SP_{RE,sc,i} is revised if

		necessary from survey result
	It is noted that the SP value is calculated under	which is conducted by JC or
	the specific conditions	project participants every three
	1	years.
$SP_{PI,i}$	SP of project air compressor <i>i</i> under the	Specifications of project air
,,	project specific conditions.	compressor <i>i</i> prepared for the
		quotation or factory acceptance
		test data by manufacturer.
SP _{PJ,sc,i}	SP of project air compressor <i>i</i> under the	Specifications of project air
	specific conditions is calculated by the	compressor i prepared for the
	following equation:	quotation or factory acceptance
		test data by manufacturer.
	$SP_{PJ,sc,i} = SP_{PJ,i} \times \frac{T_{s,PJ,sc,i}}{T_{s,PJ,i}} \times \left[\left(\frac{P_{d,PJ,sc,i}}{P_{s,PJ,sc,i}} \right)^{\frac{k-1}{m_i k}} - 1 \right]$	
	$\div \left[\left(\frac{P_{d,PJ,i} + 0.101}{P_{s,PJ,i}} \right)^{\frac{k-1}{m_i k}} - 1 \right]$	
	k: Heat capacity ratio (Dried Air) = 1.4	
	m_i : Number of compression stages of project air	
	compressor i	
	$P_{S,PJ,i}$: Suction pressure of project air compressor i under	
	the project specific conditions [MPa(abs)] (Default value	
	is set at atmospheric pressure = 0.101[MPa(abs)])	
	$P_{s,PJ,sc,i}$: Suction pressure of project air compressor i	
	under the specific conditions [MPa(abs)] (Default value	
	is set at atmospheric pressure = 0.101[MPa(abs)])	
	$T_{s,PJ,i}$: Suction temperature of project air compressor i	
	under the project specific conditions [K] (Value from the	
	product catalogue or manufacturer's specification)	
	$T_{s,PJ,sc,i}$: Suction temperature of project air compressor i	
	under the specific conditions [K] (Default value is set at	
	293.0[K])	
	$P_{d,PJ,i}$: Discharge pressure of project air compressor i	
	under the project specific conditions [MPa(Gauge	
	pressure)] (Value from the product catalogue or	
	manufacturer's specification)	
	$P_{d,PJ,SC,i}$: Discharge pressure of project air compressor i	

under the specific conditions [MPa(abs)] (=	
0.101[MPa(abs)] + 0.7 [MPa(Gauge pressure)] =	
0.801[MPa(abs)])	