JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand	
Name of the methodology proponents	Marubeni Corporation	
submitting this form		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable-/non-	
Methodology applies	renewable sources)	
Title of the proposed methodology, and Introduction of digital solution (AI ana		
version number	etc.) to improve boiler combustion	
	efficiency	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):		
Date of completion	11/07/2022	

History of the proposed methodology

Version	Date	Contents revised
1.0	11/07/2022	First edition

A. Title of the methodology

Introduction of digital solution (AI analysis, etc.) to improve boiler combustion efficiency, Version 1.0

B. Terms and definitions

Terms	Definitions	
Power generation optimization	Digital solution which analyzes the power generation system operation data and provides the control of power	
technology		
	generation system with the optimized command to improve	
	the efficiency as a result of optimized power generation.	
Power generation system	System consisting of boiler, generator and auxiliary	
	equipment to generate electricity.	
Commissioning	Performance verification of the power generation	
	optimization technology.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Introduction of power generation optimization technology into	
measures	power generation system improves power generation	
	efficiency, which leads to reduction of fuel and hence GHG	
	emissions.	
Calculation of reference	Reference emissions are GHG emissions from reference power	
emissions	generation system, calculated with project emissions and rate	
	of power generation efficiency improvement due to	
	introduction of the project power generation optimization	
	technology.	
Calculation of project	Project emissions are GHG emissions from project power	
emissions	generation system, calculated with fuel consumption by the	
	project power generation system, net calorific value and CO ₂	
	emission factor for consumed fuel.	
	Although project power generation optimization technology	

	requires additional electricity consumption, it is small and negligible in calculation of project emissions.	
Monitoring parameters	• Fuel consumption of the project power generation system	
	• Electric power of the project generator	

D. Eligibility criteria		
This methodology is applicable to projects that satisfy all of the following criteria.		
Criterion 1 Power generation optimization technology is newly introduced to the power		
	generation system.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fuel consumption by reference power generation system CO2		
Project emissions		
Emission sources GHG type		
Fuel consumption by project power generation system	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying the project emissions by rate of power generation efficiency improvement due to introduction of the project power generation optimization technology, denoted by " η ".

 η is fixed *ex-ante* in a conservative manner to ensure net emission reductions. How to set η is instructed in Section I of this methodology.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} (FC_{PJ,i,p} \times NCV_{PJ,fuel,i} \times EF_{PJ,fuel,i} \times \eta_{i})$$

Where	
RE _p	Reference emissions during the period p [tCO ₂ /p]
FC _{PJ,i,p}	Fuel consumption by the project power generation system i during the period p
	[mass or volume/p]
$NCV_{PJ,fuel,i}$	Net calorific value of fuel consumed by the project power generation system i
	[GJ/mass or volume]
$EF_{PJ,fuel,i}$	CO_2 emission factor for fuel consumed by the project power generation system
	<i>i</i> [tCO ₂ /GJ]
η_i	Ratio of project power generation system <i>i</i> to reference power generation system
	<i>i</i> [dimensionless]
i	Identification number of the power generation system

Multiple test data with a load factor of generator are used to determine the value of η_i *ex ante* as instructed in Section I of this methodology. The lowest load factor amongst the test data is set as a threshold value. Fuel consumption by the project power generation system with the load factor of generator being less than the threshold value is excluded from calculation of reference emissions. The threshold value of load factor is determined at the time of validation.

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (FC_{PJ,i,p} \times NCV_{PJ,fuel,i} \times EF_{PJ,fuel,i})$$

Where

i

PE_p	Project emissions during the period p [tCO ₂ /p]
$FC_{PJ,i,p}$	Fuel consumption by the project power generation system i during the period p
	[mass or volume/p]
NOV	

- NCV_{PJ,fuel,i} Net calorific value of fuel consumed by the project power generation system *i* [GJ/mass or volume]
- $EF_{PJ,fuel,i}$ CO₂ emission factor for fuel consumed by the project power generation system *i* [tCO₂/GJ]
 - Identification number of the power generation system

Multiple test data with a load factor of generator are used to determine the value of η_i *ex ante* as instructed in Section I of this methodology. The lowest load factor amongst the test data is set as a threshold value. Fuel consumption by the project power generation system with the

load factor of generator being less than the threshold value is excluded from calculation of project emissions. The threshold value of load factor is determined at the time of validation.

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

Where

ER_p	Emissions reductions during the period p [tCO ₂ /p]
RE_p	Reference emissions during the period p [tCO ₂ /p]

PE_p Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
η_i	Ratio of project power generation system <i>i</i> to	Commissioning result
	reference power generation system <i>i</i>	ASME PTC4
		ASME PTC6
	η_i is calculated with the following equation.	
	$\eta_i = PGE_{PJ,i} \div PGE_{RE,i}$	
	Where	
	$PGE_{PJ,i}$ Power generation efficiency of the	
	project power generation system <i>i</i>	
	$PGE_{RE,i}$ Power generation efficiency of the	
	reference power generation system <i>i</i>	
	Reference power generation system is the same	
	as the project generation system without	
	activation of the project power generation	
	optimization technology.	
	$PGE_{PJ,i}$ and $PGE_{RE,i}$ are calculated by means	
	specified in the latest version of ASME PTC4	

	and ASME PTC6. Then, $\eta_{i,test}$ is calculated for	
	each data set obtained for different time	
	periods, and p values in null-hypothesis	
	significance testing are calculated for each $\eta_{i,test}$	
	obtained to exclude outliers.	
	A default value η_i is obtained and fixed <i>ex-ante</i>	
	at the time of validation to ensure net emission	
	reductions with the following procedure:	
	1) $\eta_{i,test}$ whose p value is less than 0.05 is	
	excluded from the data set since it is not	
	statistically significant.	
	2) An averaged ratio of power generation	
	efficiency change (defined as η_{ave}) is obtained	
	by averaging the remained $\eta_{i,test}$ with statistical	
	significance.	
	3) A standard deviation is also obtained from	
	the remained $\eta_{i,test}$ with statistical significance.	
	4) A default value η_i is obtained by subtracting	
	standard deviation (σ) from averaged energy	
	saving factor ($\eta_{i,ave}$).	
	$\eta_i = \eta_{i,ave} - \sigma_i$	
	Where	
	r $i \sum r$	
	$\eta_{i,ave} = -\frac{1}{n}\sum_{i}\eta_{i,test}$	
	$\sigma = \sqrt{\frac{1}{n} \sum_{i} (\eta_{i,test} - \eta_{i,ave})^2}$	
	$\sqrt{n} \frac{1}{i}$	
	n Number of data $(\eta_{i,test})$ used to calculate	
	standard deviation	
	When the power generation system i is	
	replaced, η_i is recalculated and fixed in the	
	same manner as described above.	
NCV _{PJ,fuel,i}	Net calorific value of fuel consumed by the	In the order of preference:
. /	project power generation system <i>i</i>	a) values provided by fuel

		 supplier; b) measurement by the project participants; c) regional or national default values; or d) IPCC default values provided in table 1.2 of Ch.1 Vol.2 of 2006 IPCC Guidelines on
		National GHG Inventories. Lower value is applied.
$\mathrm{EF}_{\mathrm{PJ,fuel,i}}$	CO_2 emission factor for fuel consumed by the	In the order of preference:
	project power generation system i	a) values provided by fuel
		supplier;
		b) measurement by the project
		participants;
		c) regional or national default
		values; or
		d) IPCC default values provided
		in table 1.4 of Ch.1 Vol.2 of
		2006 IPCC Guidelines on
		National GHG Inventories.
		Lower value is applied.