Joint Crediting Mechanism Approved Methodology TH_AM005 "Energy Saving by Introduction of High Efficiency Non-Inverter Type Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Non-Inverter Type Centrifugal Chiller, Version 023.0

B. Terms and definitions

Terms	Definitions	
Non-inverter type	A non-inverter type centrifugal chiller is a chiller including a	
centrifugal chiller	centrifugal compressor without inverter. It is commonly used for	
	air-conditioning with huge cooling load, e.g., buildings, shopping	
	malls or factories etc.	
Cooling capacity	Cooling capacity is the capability of individual chiller to remove	
	heat. In this methodology, "cooling capacity" is used to represent	
	a cooling capacity per one chiller unit and not for a system with	
	multiple chiller units.	
Periodical check	Periodical check is a periodical investigation of chiller done by	
	manufacturer or agent who is authorized by the manufacturer, in	
	order to maintain chiller performance.	
COP (Coefficient Of	A ratio of the net refrigerating capacity to the total input power at	
Performance)	any given set of rating conditions.	
	Net refrigerating capacity is the capacity of the evaporator	
	available for cooling of the thermal load external to the chiller	
	and it is calculated using only the sensible heat transfer. (AHRI	
	<u>Standard 550/590)</u>	

C. Summary of the methodology

Items			Summary		
GHG	emission	reduction	This methodology applies to the project that aims for saving		

measures	energy by introducing high efficiency centrifugal chiller for the	
	target factory, commercial facilities etc. in Thailand.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	chiller, calculated with power consumption of project chiller,	
	ratio of COPs (Coefficient Of Performance) of reference/project	
	chillers and CO ₂ emission factor for electricity consumed.	
Calculation of project	Project emissions are GHG emissions from using project chiller,	
emissions	calculated with power consumption of project chiller and CO ₂	
	emission factor for electricity consumed.	
Monitoring parameter	Power consumption of project chiller	
	• The amount of fuel consumed and/or the amount of	
	electricity generated by captive power, where applicable.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project chiller is a non-inverter type centrifugal chiller with a capacity which is				
	less than or equals to 1,500 USRt.				
	Note: 1 USR	t = 3.52 kW			
Criterion 2	COP for pr	oject chiller i ca	alculated under the s	tandardizing temperature	
	conditions*1	(COP _{PJ,tc,i}) is more	e than the threshold CO	OP values set in the table	
	below. ("x" i	n the table represen	nts cooling capacity per	unit.)	
	Cooling capacity per unit [USRt]	capacity per unit <u>x≤600300≤x<500</u> <u>600<x≤800500≤x<800< u=""> <u>800<x≤1600< u="">800≤x≤1500</x≤1600<></u></x≤800500≤x<800<></u>			
	Threshold COP value	5. <u>90</u> 67	<u>6.00</u> 5.81	6.0 <u>8</u> 5	
	$COP_{PJ,tc,i}$ is calculated by altering the temperature conditions of COP of project chiller i ($COP_{PJ,i}$) from the project specific conditions to the standardizing conditions. $COP_{PJ,i}$ is derived from specifications prepared for the quotation or factory acceptance test data by manufacturer. [equation to calculate $COP_{PJ,tc,i}$]				
	7.7=				
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled} + TD_{cooling})$ $\div (37 - 7 + TD_{cooling})$				
	$\div (37 - 7 + TD_{chilled} + TD_{cooling})]$				

	$COP_{PJ,tc,i}$: COP of project chiller <i>i</i> calculated under the standardizing		
		temperature conditions* [-]		
	$COP_{PJ,i}$: COP of project chiller i under the project specific conditions		
		[-]		
	$T_{cooling-out,i}$: Output cooling water temperature of project chiller <i>i</i> set		
		under the project specific conditions [degree Celsius]		
	T _{chilled-out,i}	: Output chilled water temperature of project chiller i set		
		under the project specific conditions [degree Celsius]		
	$TD_{cooling}$: Temperature difference between condensing temperature		
		of refrigerant and output cooling water temperature		
		1.5 degree Celsius set as a default value [degree Celsius]		
	TD _{chilled}	: Temperature difference between evaporating temperature		
		of refrigerant and output chilled water temperature,		
	1.5 degree Celsius set as a default value [degree Celsius]			
	*1: The standardizing temperature conditions to calculate COP _{PJ,tc,i}			
		Chilled water: output 7 degrees Celsius		
	input 12 degrees Celsius Cooling water: output 37 degrees Celsius			
	Coomig v	water: output 37 degrees Celsius input 32 degrees Celsius		
Criterion 3	Periodical check is planned at least one (1) time annually.			
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is			
	zero.			
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is prepared.			
	In the case of replacing the existing chiller with the project chiller, a plan for			
	prevention of releasing refrigerant used in the existing chiller to the air (e.g.			
	re-use of the equipment) is prepared. Execution of this plan is checked at the			
	time of verification, in order to confirm that refrigerant used for the existing one			
	replaced by the p	roject is prevented from being released to the air.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Power consumption by reference chiller	CO_2	
Project emissions		
Emission sources GHG types		

Power consumption by project chiller	CO ₂
--------------------------------------	-----------------

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference COP value varies by its cooling capacity.
- 2. The maximum values of COP in each cooling capacity range set for this methodology are defined as COP_{RE,i} as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times \left(COP_{PJ,tc,i} \div COP_{RE,i} \right) \times EF_{elec} \}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

 $COP_{PJ,tc,i}$: COP of project chiller i calculated under the standardizing temperature conditions

[-]

 $COP_{RE,i}$: COP of reference chiller i under the standardizing temperature conditions [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_i (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PLi,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$

 $\mathrm{ER_p}$: Emission reductions during the period p [tCO₂/p] $\mathrm{RE_p}$: Reference emissions during the period p [tCO₂/p] $\mathrm{PE_p}$: Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity. When project chiller consumes only 1) grid electricity, 2) captive electricity or 3) electricity directly supplied from small power producer (SPP) to the project site through its internal grid (e.g. industrial park), the project participant applies the CO ₂ emission factor respectively. When project chiller may consume electricity supplied from more than 1 electric source, the project participant applies the CO ₂ emission factor with the lowest value.	[Grid electricity] The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Grid Emission Factor (GEF) of Thailand", endorsed by Thailand Greenhouse Gas Management Organization unless otherwise instructed by the Joint Committee.
	[CO ₂ emission factor] For 1) grid electricity: The most recent value available from the source stated in this table at the time of validation For 2) captive electricity including cogeneration system, it is determined based on the following options: a) Calculated from its power generation efficiency (nelec [%]) obtained from	[Captive electricity] For the option a) Specification of the captive power generation system provided by the manufacturer (η _{elec} [%]). CO ₂ emission factor of the fossil fuel type used in the captive power generation system (EF _{fuel} [tCO ₂ /GJ]) For the option b) Generated and supplied
	manufacturer's specification The power generation efficiency based on lower	Generated and supplied electricity by the captive

Parameter	Des	scription of	data	Source
	generation systems specification is ap	m from th	ne captive power ne manufacturer's $\frac{0}{c} \times EF_{\text{fuel}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	from monitored d for power generat electricity gener monitoring per measurement is c equipment to wh issued by an national/internation	eration effi ata of the ar ion (FC _{PJ,p}) ated (EG _P iod <i>p</i> is onducted w nich calibra entity a	ciency calculated mount of fuel input and the amount of $p_{J,p}$) during the applied. The ith the monitoring accredited under	Net calorific value (NCV _{fuel} [GJ/mass or volume]) and CO ₂ emission factor of the fuel (EF _{fuel} [tCO ₂ /GJ]) in order of preference: 1) values provided by the fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.
	Where: NCV _{fuel} : Net cal [GJ/mass or volur		of consumed fuel	[Captive electricity with
	_	•	generation system	diesel fuel] CDM approved small scale methodology: AMS-I.A.
	meets all of the fo in the following ta depending on the	able may be	applied to EF _{elec}	[Captive electricity with natural gas]
	system • Electricity ge	eneration cap	pacity of the hal to 15 MW	2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas. CDM Methodological tool
	fuel type	Diesel fuel	Natural gas	"Determining the baseline efficiency of thermal or electric energy generation
	EF _{elec}	0.8 *1	0.46 *2	systems version02.0" for

Parameter	Description of data	Source
		the default efficiency for
	*1 The most recent value at the time of	off-grid power plants.
	validation is applied.	
	*2 The value is calculated with the equation in	
	the option a) above. The lower value of default	
	effective CO ₂ emission factor for natural gas	
	(0.0543tCO ₂ /GJ), and the most efficient value	
	of default efficiency for off-grid gas turbine	
	systems (42%) are applied.	
	For 3) electricity directly supplied from small	
	power producer (SPP), it is determined based	
	on the following options:	
	a) The value provided by the SPP with the	
	evidence;	
	b) The value calculated in the same manner for	[Electricity directly
	the option a) of 2) captive electricity as	supplied from SPP]
	instructed above;	For option a) the evidence
	c) The value calculated in the same manner for	stating information relevant
	the option b) of 2) captive electricity as	to the value of emission
	instructed above;	factor e.g. data of power
	When project chiller may consume electricity	generation, type of power plant, type of fossil fuel,
	supplied from more than 1 SPP, the project	period of time.
	participant applies the CO ₂ emission factor with	
	the lowest value.	
$COP_{RE,i}$	The COP of the reference chiller i is selected	The default COP values are derived from the result of
	from the default COP value in the following	survey on COP of chillers
	table in line with cooling capacity of the project	from manufacturers that
	chiller i. ("x" in the table represents cooling	have high market share.
	capacity per unit.)	The survey should prove the use of clear
	Cooling 600 <x<8 800<x<16<="" td=""><td>methodology. The COP_{RE,i}</td></x<8>	methodology. The COP _{RE,i}
	capacity /unit $\frac{x \le 00030}{0 \le x < 500}$ $\frac{00500 \le x}{00000}$	should be revised if
	(USRt) <800 1500	necessary from survey result which is conducted
	$COP_{RE,i}$ 5.9067 6.005.81 6.085	by JC or project
		participants.
$COP_{PJ,i}$	The COP of project chiller <i>i</i> under the project	Specifications of project

Parameter	Description of data	Source
	specific conditions.	chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer
T _{cooling} -out,i	Output cooling water temperature of project chiller <i>i</i> set under the project specific conditions.	Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer
T _{chilled} -out,i	Output chilled water temperature of project chiller <i>i</i> set under the project specific conditions.	Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer

History of the document

Version	Date	Contents revised	
<u>03.0</u>	<u>TBD</u>	<u>TBD</u>	
02.0	14 January 2019	Electronic decision by the Joint Committee	
		Revision to:	
		• Add option to identify CO ₂ emission factor for consumed	
		electricity by changing the description of CO ₂ emission factor	
		for consumed electricity directly supplied from small power	
		producer (SPP)	
		Change the description of "Measurement methods and"	
		procedures", "Source of data", "Description of data" and	
		"Units" in the monitoring spreadsheet	
01.0	21 August 2017	JC3, Annex 7	
		Initial approval.	