Joint Crediting Mechanism Approved Methodology TH_AM005 "Energy Saving by Introduction of High Efficiency Non-Inverter Type Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Non-Inverter Type Centrifugal Chiller, Version 03.0

B. Terms and definitions

Terms	Definitions			
Non-inverter type	A non-inverter type centrifugal chiller is a chiller including a			
centrifugal chiller	centrifugal compressor without inverter. It is commonly used for			
	air-conditioning with huge cooling load, e.g., buildings,			
	shopping malls or factories etc.			
Cooling capacity	Cooling capacity is the capability of individual chiller to remove			
	heat. In this methodology, "cooling capacity" is used to represent			
	a cooling capacity per one chiller unit and not for a system with			
	multiple chiller units.			
Periodical check	Periodical check is a periodical investigation of chiller done by			
	manufacturer or agent who is authorized by the manufacturer, in			
	order to maintain chiller performance.			
COP (Coefficient Of	A ratio of the net refrigerating capacity to the total input power			
Performance)	at any given set of rating conditions.			
	Net refrigerating capacity is the capacity of the evaporator			
	available for cooling of the thermal load external to the chille			
	and it is calculated using only the sensible heat transfer. (AHR			
	Standard 550/590)			

C. Summary of the methodology

	Items		Summary
GHG	emission	reduction	This methodology applies to the project that aims for saving

measures	energy by introducing high efficiency centrifugal chiller for the		
	target factory, commercial facilities etc. in Thailand.		
Calculation of reference	Reference emissions are GHG emissions from using reference		
emissions	chiller, calculated with power consumption of project chiller,		
	ratio of COPs (Coefficient Of Performance) of		
	reference/project chillers and CO2 emission factor for		
	electricity consumed.		
Calculation of project	Project emissions are GHG emissions from using project		
emissions	chiller, calculated with power consumption of project chiller		
	and CO ₂ emission factor for electricity consumed.		
Monitoring parameter	• Power consumption of project chiller		
	• The amount of fuel consumed and/or the amount of		
	electricity generated by captive power, where applicable.		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project chiller is a non-inverter type centrifugal chiller with a capacity which is					
	less than or equals to 1,500 USRt.					
	Note:	Note: 1 USRt = 3.52 kW				
Criterion 2	COP	for project chiller	<i>i</i> calculated	under the star	ndardizing tempe	erature
	condi	tions ^{*1} ($COP_{PJ,tc,i}$) is	more than the	threshold CO	P values set in the	e table
	below	. ("x" in the table re	presents coolir	ng capacity per	unit.)	
		Cooling capacity per unit [USRt]	x≤600	600 <x≤800< th=""><th>800<x≤1600< th=""><th></th></x≤1600<></th></x≤800<>	800 <x≤1600< th=""><th></th></x≤1600<>	
		Threshold COP value	5.90	6.00	6.08	
	$COP_{PJ,tc,i}$ is calculated by altering the temperature conditions of COP of project chiller <i>i</i> (COP _{PJ,i}) from the project specific conditions to the standardizing conditions. $COP_{PJ,i}$ is derived from specifications prepared for the quotation or factory acceptance test data by manufacturer.					
	[equation to calculate COP _{PJ,tc,i}]					
	($COP_{PJ,tc,i} = COP_{PJ,i}$	$\times [(T_{cooling-o})]$	_{ut,i} – T _{chilled} –	$_{out,i} + TD_{chilled}$	
		+ T	$D_{cooling}) \div (3)$	$7 - 7 + TD_{ch}$	(1) (1)]

	$COP_{PJ,tc,i}$: COP of project chiller <i>i</i> calculated under the standardizing					
	temperature conditions* [-]					
	$COP_{PJ,i}$: COP of project chiller <i>i</i> under the project specific					
	conditions [-]					
	T _{cooling-out,i} : Output cooling water temperature of project chiller <i>i</i> set					
	under the project specific conditions [degree Celsius]					
	$T_{chilled-out,i}$: Output chilled water temperature of project chiller <i>i</i> set					
	under the project specific conditions [degree Celsius]					
	TD _{cooling} : Temperature difference between condensing temperature					
	of refrigerant and output cooling water temperature					
	1.5 degree Celsius set as a default value [degree Celsius]					
	TD _{chilled} : Temperature difference between evaporating temperature					
	of refrigerant and output chilled water temperature,					
	1.5 degree Celsius set as a default value [degree Celsius]					
	*1: The standardizing temperature conditions to calculate COP _{PJ,tc,i} Chilled water: output 7 degrees Celsius					
	input 12 degrees Celsius					
	Cooling water: output 37 degrees Celsius					
Criterion 3	input 32 degrees Celsius					
	Periodical check is planned at least one (1) time annually.					
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is					
	zero.					
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is					
	prepared. In the case of replacing the existing chiller with the project chiller, a					
	plan for prevention of releasing refrigerant used in the existing chiller to the air					
	(e.g. re-use of the equipment) is prepared. Execution of this plan is checked at					
	the time of verification, in order to confirm that refrigerant used for the existing					
	one replaced by the project is prevented from being released to the air.					

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Power consumption by reference chiller CO ₂		
Project emissions		
Emission sources GHG types		

Power consumption by project chiller	CO_2
--------------------------------------	--------

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference COP value varies by its cooling capacity.
- 2. The maximum values of COP in each cooling capacity range set for this methodology are defined as COP_{RE,i} as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (COP_{PJ,tc,i} \div COP_{RE,i}) \times EF_{elec} \}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{Pl,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

COP_{PJ,tc,i}: COP of project chiller *i* calculated under the standardizing temperature conditions [-]

 $COP_{RE,i}$: COP of reference chiller *i* under the standardizing temperature conditions [-]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$

 ER_p : Emission reductions during the period p [tCO₂/p]

- RE_p : Reference emissions during the period p [tCO₂/p]
- PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity. When project chiller consumes only 1) grid electricity, 2) captive electricity or 3) electricity directly supplied from small power producer (SPP) to the project site through its internal grid (e.g. industrial park), the project participant applies the CO ₂ emission factor respectively.	[Grid electricity] The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Grid Emission Factor (GEF) of Thailand", endorsed by Thailand Greenhouse Gas
	When project chiller may consume electricity supplied from more than 1 electric source, the project participant applies the CO_2 emission factor with the lowest value.	Management Organization unless otherwise instructed by the Joint Committee.
		[Captive electricity]
	[CO ₂ emission factor] For 1) grid electricity: The most recent value available from the source stated in this table at the time of validation	For the option a) Specification of the captive power generation system provided by the
	For 2) captive electricity including cogeneration system, it is determined based on the following options:	manufacturer (η_{elec} [%]). CO ₂ emission factor of the fossil fuel type used in the captive power generation system (EF _{fuel} [tCO ₂ /GJ])
	a) Calculated from its power generationefficiency (η_{elec} [%]) obtained frommanufacturer's specificationThe power generation efficiency based on lower	For the option b) Generated and supplied electricity by the captive power generation system

Parameter	D	escription of	Source			
	generation syst specification is a $EF_{elec} =$ <u>b) Calculated fro</u> The power generation monitored data power generation electricity generation is conducted with which calibration	the monitor from the second s	data acy calculated from at of fuel input for and the amount of $p_{J,p}$) during the . The measurement oring equipment to a is issued by an	 (EG_{PI,p} [MWh/p]). Fuel amount consumed by the captive power generation system (FC_{PI,p} [mass or volume /p]). Net calorific value (NCV_{fuel} [GJ/mass or volume]) and CO₂ emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference: 1) values provided by the fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 		
	standards; $EF_{elec} = FC_{PJ,p}$ Where: NCV_{fuel} : Net c. [GJ/mass or volu Note:	× NCV _{fuel} × alorific value ume]	tional/international $EF_{fuel} \times \frac{1}{EG_{PJ,p}}$ to of consumed fuel generation system	 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied. [Captive electricity with diesel fuel] CDM approved small scale methodology: AMS-I.A. 		
	in the following depending on the	table may be e consumed f	aditions, the value applied to EF _{elec} uel type. vable generation	[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas		
		generation cap ess than or equ Diesel fuel	pacity of the ual to 15 MW Natural gas	natural gas. CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation		
	EF _{elec}	0.8 *1	0.46 *2	systems version02.0" for		

Parameter	Description of data				Source
					the default efficiency for
	*1 The most re	cent valu	ue at the tim	ne of	off-grid power plants.
	validation is ap	plied.			
	*2 The value i	s calcula	ated with th	e equation in	
	the option a) a	bove. Tł	ne lower va	lue of default	
	effective CO ₂	emission	n factor fo	r natural gas	
	(0.0543tCO ₂ /G	J), and t	he most effi	cient value of	
	default efficie	ency for	r off-grid	gas turbine	
	systems (42%)	are appl	ied.		
	For 3) electricit	ty direct	ly supplied	from small	
	power produce	r (SPP),	it is determ	nined based	
	on the followin	ng option	s:		
	a) The value pr	ovided b	by the SPP v	with the	
	evidence;				
	b) The value calculated in the same manner for				[Electricity directly
	the option a) of 2) captive electricity as				supplied from SPP]
	instructed abov	ve;	For option a) the evidence		
	c) The value ca	lculated	in the same	e manner for	stating information relevant
	the option b) of	f 2) capt	ive electrici	ty as	to the value of emission
	instructed abov	ve;			factor e.g. data of power
	When project c		-	-	generation, type of power plant, type of fossil fuel,
	supplied from i			2 0	period of time.
	participant applies the CO ₂ emission factor with				
	the lowest valu				
COP _{RE,i}	The COP of the reference chiller i is selected				The default COP values are derived from the result of
	from the defaul		survey on COP of chillers		
	in line with coo	U 1	•		from manufacturers that
	<i>i</i> . ("x" in the tab	ole repres	sents coolin	g capacity per	have high market share. The
	unit.)				survey should prove the use of clear methodology. The
	Cooling		<i>(0.0)</i>	000	$COP_{RE,i}$ should be revised if
	capacity /unit	x≤600	600 <x≤8 00</x≤8 	800 <x≤16 00</x≤16 	necessary from survey
	(USRt)				result which is conducted by JC or project participants.
	COP _{RE,i}	5.90	6.00	6.08	or project participanto.
COP _{PJ,i}	The COP of p	roject cl	niller <i>i</i> und	er the project	Specifications of project chiller <i>i</i> prepared for the

Parameter	Description of data	Source
	specific conditions.	quotation or factory acceptance test data by manufacturer
T _{cooling-out,i}	Output cooling water temperature of project chiller <i>i</i> set under the project specific conditions.	Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer
T _{chilled-out,i}	Output chilled water temperature of project chiller <i>i</i> set under the project specific conditions.	Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by manufacturer

History of the document

Version	Date	Contents revised
03.0	11 October 2023	 JC5 Revision to: Update the threshold COP values in Criterion 2 and the default COP value due to the improved efficiency of chillers currently available in the local market since its initial approval of the methodology Add the definition of "COP (Coefficient Of Performance)"
02.0	14 January 2019	 Electronic decision by the Joint Committee Revision to: Add option to identify CO₂ emission factor for consumed electricity by changing the description of CO₂ emission factor for consumed electricity directly supplied from small power producer (SPP) Change the description of "Measurement methods and procedures", "Source of data", "Description of data" and "Units" in the monitoring spreadsheet
01.0	21 August 2017	JC3, Annex 7 Initial approval.