Joint Crediting Mechanism Approved Methodology TH_AM003 "Energy Saving by Introduction of High Efficiency Inverter Type Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Inverter Type Centrifugal Chiller, Version 01.002.0

B. Terms and definitions

Terms	Definitions
Inverter type centrifugal chiller	An inverter type centrifugal chiller is a chiller which
	contains inverter, an apparatus to control the speed of the
	compressor motor in order to maintain the ambient
	temperature, and includes a centrifugal compressor.
Cooling capacity	Cooling capacity is the capability of individual chiller to
	remove heat. In this methodology, "cooling capacity" is used
	to represent a cooling capacity per one chiller unit and not
	for a system with multiple chiller units.
Periodical check	Periodical check is a periodical investigation of chiller done
	by manufacturer or agent who is authorized by the
	manufacturer, in order to maintain chiller performance.
COP (Coefficient Of	A ratio of the net refrigerating capacity to the total input
Performance)	power at any given set of rating conditions.
	Net refrigerating capacity is the capacity of the evaporator
	available for cooling of the thermal load external to the
	chiller and it is calculated using only the sensible heat
	transfer. (AHRI Standard 550/590)

C. Summary of the methodology

	Items		Summary
GHG	GHG emission reduction		This methodology applies to the project that aims for saving
measu	res		energy by introducing high efficiency centrifugal chiller for the

	target factory, commerce facilities etc. in Thailand.			
Calculation of reference	Reference emissions are GHG emissions from using reference			
emissions	chiller, calculated with power consumption of project chiller,			
	ratio of COPs (Coefficient Of Performance) of			
	reference/project chillers and CO2 emission factor for			
	electricity consumed.			
Calculation of project	Project emissions are GHG emissions from using project			
emissions	chiller, calculated with power consumption of project chiller			
	and CO ₂ emission factor for electricity consumed.			
Monitoring parameter	Power consumption of project chiller			
	• The amount of fuel consumed and/or the amount of			
	electricity generated by captive power, where applicable.			

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project of	Project chiller is an inverter type centrifugal chiller with a capacity which is less					
	than or e	than or equals to 1,500 USRt.					
	* 1 USR $t = 3.52 \text{ kW}$						
Criterion 2	COP fo	r project ch	iller i calcu	lated under	the standa	rdizing tem	perature
	conditio	ns* (COP _{PJ,tc}	e,i) is more that	an the thresl	nold COP va	alues set in	the table
	below. ("x" in the tab	ole represents	cooling cap	acity per uni	it.)	
		Cooling capa (US	acity per unit_ SRt)	<u>x≤350</u>	350 <x≤800< th=""><th>800<x≤1,500< th=""><th></th></x≤1,500<></th></x≤800<>	800 <x≤1,500< th=""><th></th></x≤1,500<>	
		Threshold	COP value	<u>6.24</u>	6.37	6.37 6.47	
	_	; capacity per i t (USRt)	300≤x<450	4 50≤x<550	550≤x<8 2	25 825≤x≤	1,500
	Thresho	Threshold COP value 5.59 5.69 5.85 6.06					
	COP _{PJ,tc,i} is calculated by altering the temperature conditions of COP of project chiller i (COP _{PJ,i}) from the project specific conditions to the standardizing conditions. COP _{PJ,i} is derived from specifications prepared for the quotation or factory acceptance test data by manufacturer.						

	[equation to calculate COP _{PJ,tc,i}]						
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled}]$						
		$+ TD_{cooling}) \div (37 - 7 + TD_{chilled} + TD_{cooling})]$					
	$COP_{PJ,tc,i}$: COP of project chiller <i>i</i> calculated under the standardizing					
		temperature conditions* [-]					
	$COP_{PJ,i}$: COP of project chiller <i>i</i> under the project specific conditions					
		[-]					
	$T_{cooling-out,i}$: Output cooling water temperature of project chiller <i>i</i> set					
		under the project specific conditions [degree Celsius]					
	T _{chilled-out,i}	: Output chilled water temperature of project chiller <i>i</i> set					
		under the project specific conditions [degree Celsius]					
	$TD_{cooling}$: Temperature difference between condensing temperature					
		of refrigerant and output cooling water temperature					
		1.5 degree Celsius set as a default value [degree Celsius]					
	$TD_{chilled}$: Temperature difference between evaporating temperature					
		of refrigerant and output chilled water temperature,					
		1.5 degree Celsius set as a default value [degree Celsius]					
	*The standardizing Chilled w	ng temperature conditions to calculate COP _{PJ,tc,i} vater: output 7 degrees Celsius					
	Cililled w	input 12 degrees Celsius					
	Cooling v	vater: output 37 degrees Celsius					
Criterion 3	Periodical check	input 32 degrees Celsius					
Criterion 4	Periodical check is planned more than one (1) time annually.						
CHICHOH 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is						
Criterion 5	Zero.	tion of releasing refrigerant used for project chiller is prepared.					
Citiciton		placing the existing chiller with the project chiller, a plan for					
	_	easing refrigerant used in the existing chiller to the air (e.g. re-					
	1	nent) is prepared. Execution of this plan is checked at the time					
		n order to confirm that refrigerant used for the existing one					
		roject is prevented from being released to the air.					
	replaced by the p	roject is prevenied from being released to the air.					

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types

Power consumption by reference chiller	CO ₂	
Project emissions		
Emission sources	GHG types	
Power consumption by project chiller	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference COP value varies by its cooling capacity.
- 2. The maximum values of COP in each cooling capacity range set for this methodology are defined as $COP_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_p = \sum_i \{ EC_{PJ,i,p} \times \left(COP_{PJ,tc,i} \div COP_{RE,i} \right) \times EF_{elec} \}$$

 RE_n : Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

 $COP_{PJ,tc,i}$: COP of project chiller *i* calculated under the standardizing temperature conditions [-]

COP_{RE.i}: COP of reference chiller *i* under the standardizing temperature conditions [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_i \bigl(EC_{PJ,i,p} \times EF_{elec}\bigr)$$

PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PLi,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_{p} : Emission reductions during the period p [tCO₂/p] RE_{p} : Reference emissions during the period p [tCO₂/p] PE_{p} : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project chiller consumes only grid electricity or	The most recent value
	captive electricity, the project participant applies the	available at the time of
	CO ₂ emission factor respectively.	validation is applied and
		fixed for the monitoring
	When project chiller may consume both grid	period thereafter. The
	electricity and captive electricity, the project	data is sourced from
	participant applies the CO ₂ emission factor with lower	"Grid Emission Factor
	value.	(GEF) of Thailand",
		endorsed by Thailand
	[CO ₂ emission factor]	Greenhouse Gas
	For grid electricity: The most recent value available	Management
	from the source stated in this table at the time of	Organization unless
	validation	otherwise instructed by
		the Joint Committee.
	For captive electricity, it is determined based on the	
	following options:	[Captive electricity]
		For the option a)
	a) Calculated from its power generation efficiency	Specification of the
	(η _{elec} [%]) obtained from manufacturer's	captive power generation
	specification	system provided by the

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
$\mathrm{EF}_{\mathrm{elec}}$	0.8 *1	0.46 *2

*1 The most recent value at the time of validation is applied.

manufacturer (η_{elec} [%]). CO₂ emission factor of the fossil fuel type used in the captive power generation system (EF_{fuel} [tCO₂/GJ])

For the option b)

Generated and supplied electricity by the captive power generation system (EG_{PJ,p} [MWh/p]).

Fuel amount consumed by the captive power generation system (FC_{PJ,p} [mass or weight/p]).

Net calorific value $(NCV_{fuel} \ [GJ/mass \ or \ weight])$ and CO_2 emission factor of the fuel $(EF_{fuel} \ [tCO_2/GJ])$ in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with

	*2 The value	is calculate	ed w	ith the e	equa	ation in the	diesel fuel]
	option a) abov	e. The low	er va	alue of de	efau	ılt effective	CDM approved small
	CO ₂ emission factor for natural gas (0.0543 tCO ₂ /GJ),						scale methodology:
	and the most efficient value of default efficiency for						AMS-I.A.
	off-grid gas turbine systems (42%) are applied.						
						[Captive electricity with	
							natural gas]
							2006 IPCC Guidelines on
							National GHG
							Inventories for the source
							of EF of natural gas.
							CDM Methodological
							tool "Determining the
							baseline efficiency of
							thermal or electric energy
							generation systems
							version02.0" for the
							default efficiency for off-
							grid power plants.
$COP_{RE,i}$	The COP of the	e reference	chill	ler <i>i</i> is sel	lecto	ed from the	The default COP values
	default COP va	alue in the	follo	wing tabl	les	in line with	are derived from the
	cooling capaci	ity of the p	roje	ct chiller	r i.	("x" in the	result of survey on COP
	table represent	s cooling c	apac	ity per u	nit.))	of chillers from
	~ "			T	ı		manufacturers that have
	Cooling capacity 300≤x	<450 450≤x	< 550	550≤x<82	25	825≤x≤1,500	high market share. The
	per unit (USRt)			_		,	survey should prove the
	COP _{RE.i} 5.5	5.6	9	5.85		6.06	use of clear methodology.
							The COP _{RE,i} should be
	Cooling						revised if necessary from
	capacity per unit (USRt)	<u>x≤350</u>	<u>35</u>	50 <x<u>≤800</x<u>	800	0 <x≤1,500< th=""><th>survey result which is</th></x≤1,500<>	survey result which is
	COP _{RE,i}	6.24		6.37		6.47	conducted by JC or
COD						project participants.	
$COP_{PJ,i}$	The COP of project chiller <i>i</i> under the project specific						Specifications of project
	conditions.						chiller <i>i</i> prepared for the
							quotation or factory
							acceptance test data by manufacturer
							manuracturer

T _{cooling-out,i}	Output cooling water temperature of project chiller i	Specifications of project
	set under the project specific conditions.	chiller i prepared for the
		quotation or factory
		acceptance test data by
		manufacturer
T _{chilled-out,i}	Output chilled water temperature of project chiller i	Specifications of project
	set under the project specific conditions.	chiller <i>i</i> prepared for the
		quotation or factory
		acceptance test data by
		manufacturer

History of the document

Version	Date	Contents revised
02.0	<u>TBD</u>	TBD
01.0	21 August 2017	JC3, Annex 6 Initial approval.