Joint Crediting Mechanism Approved Methodology TH_AM019 "Installation of Biomass Boiler"

A. Title of the methodology

Installation of Biomass Boiler, Ver. 01.0

B. Terms and definitions

Terms	Definitions	
Biomass	Biomass is non-fossilized and biodegradable organic material originating from plants, animals and microorganisms. This	
	includes products, by-products, residues and waste from	
	agriculture, forestry and related industries as well as the non-	
	fossilized and biodegradable organic fractions of industrial and	
	municipal wastes.	
Biomass residue	Biomass residues are defined as biomass that is a by-product,	
	residue or waste stream from agriculture, forestry and related	
	industries. This does not include municipal waste or other	
	wastes that contain fossilized and/or non-biodegradable	
	material (however, small fractions of inert inorganic material	
	like soil or sands may be included).	
Biomass boiler	A boiler which combusts biomass to heat water and produce	
	steam.	
Boiler efficiency	The ratio of the total absorption heating value of the usable heat	
	output to the heat amount contained in fuel fired in the boiler.	
	In other words, it means that 1 minus the fraction of the heat	
	loss. The heat loss includes the one by blow water.	
Drain recovery system	Drain recovery system is an equipment which recovers drain	
	with some heating energy and reuses for boiler feed water.	

C. Summary of the methodology

Items	Summary
GHG emission reduction	One or more biomass boilers are introduced and combust
measures	biomass instead of fossil fuels to generate heat and produce
	steam, resulting in reduction of GHG emissions from fossil
	fuels.
Calculation of reference	Reference emissions are CO ₂ emissions from heat generation
emissions	by a reference boiler which combusts fossil fuel(s). They are
	calculated by the amount of produced steam by the project
	biomass boiler(s), specific enthalpies of steam and water,
	reference boiler efficiency and a CO ₂ emission factor of fossil
	fuel.
Calculation of project	Project emissions are CO ₂ emissions from electricity consumed
emissions	by the project biomass boiler(s), combustion of fossil fuel(s) by
	the project biomass boiler(s) and transportation of biomass.
	CO ₂ emissions from consumed electricity are calculated by the
	amount of electricity consumed by the project biomass boiler(s)
	and its CO ₂ emission factor.
	In case the project biomass boiler(s) combusts fossil fuel(s) as
	well as biomass, project emissions include CO ₂ emissions from
	the combustion of fossil fuel(s), which are calculated by the
	amount of fossil fuel(s), net calorific value of fossil fuel(s) and
	its/their CO ₂ emission factors.
	CO ₂ emissions from biomass transportation are calculated by
	roundtrip distance of biomass transportation, mass of
	transported biomass and a CO ₂ emission factor for biomass
	transportation.
Monitoring parameters	• Amount of steam produced by the project biomass boiler(s)
	Amount of electricity consumed by the project biomass
	boiler(s) and ancillary equipment
	• Amount of fossil fuel consumed by the project biomass
	boiler(s)
	Round trip distance of biomass transportation
	 Mass of transported biomass

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	One or more biomass boilers are newly installed or replace an existing fossil
	fuel-fired boiler(s).
Criterion 2	In case of utilizing biomass fuel for project biomass boiler(s), only solid biomass fuels made of biomass residues are used.
Criterion 3	Biomass residues utilized for the project are not used for energy application in absence of the project activity. This can be demonstrated by the letter from suppliers of biomass.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fossil fuel(s) consumed for generation of heat to produce steam	CO ₂	
Project emissions		
Emission sources	GHG types	
Electricity consumed by the project biomass boiler(s) and ancillary	CO ₂	
equipment		
Fossil fuel(s) combusted by the project biomass boiler(s)	CO ₂	
Fossil fuel(s) consumption by transportation of biomass between the	CO ₂	
place of biomass supplier's stockyard and the project site		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on the amount of steam produced by the project boiler(s), specific enthalpies of produced steam and feed water, reference boiler efficiency and a CO₂ emission factor of reference fossil fuel.

A default value for the reference boiler efficiency is conservatively set to 89% taking the highest value among the fossil fuel-fired boilers sold in Thailand, and specific enthalpy of feed water is conservatively calculated by setting the highest air temperature recorded in Thailand as the temperature of feed water, so as to ensure net emission reductions.

F.2. Calculation of reference emissions

 $RE_p = \frac{SP_{PJ,p} \times (h''_{steam} - h'_{water})}{10^3} \times \frac{100}{\eta_{RE}} \times EF_{fuel,RE}$

*RE*_p Reference emissions during the period p [tCO₂/p]

 $SP_{PJ,p}$ The amount of steam produced by the project biomass boiler(s) during the period

p[t/p]

h"_{steam} Specific enthalpy of produced steam [kJ/kg]

 h'_{water} Specific enthalpy of feed water [kJ/kg]

 η_{RE} Reference boiler efficiency [%]

*EF*_{fuel,RE} CO₂ emission factor for fossil fuel consumed by the reference boiler [tCO₂/GJ]

G. Calculation of project emissions

$$PE_p = PE_{elec,p} + PE_{fuel,p} + PE_{tr,p}$$

$$PE_{elec,p} = EC_{PJ,p} \times EF_{elec}$$

$$PE_{fuel,p} = \sum_{i} FC_{PJ,i,p} \times NCV_{fuel,PJ,i} \times EF_{fuel,PJ,i}$$

$$PE_{tr,p} = \sum_{i} D_{j,p} \times m_{j,p} \times EF_{tr}$$

 PE_p Project emissions during the period p [tCO₂/p]

 $PE_{elec,p}$ Project emissions from consumed electricity by the project biomass boiler(s) and

ancillary equipment during the period p [tCO₂/p]

PE_{fuel,p} Project emissions from combustion of fossil fuel by the project boiler(s) during

the period p [tCO₂/p]

 $PE_{tr,p}$ Project emissions from transportation of biomass during the period p [tCO₂/p]

 $EC_{Pl,p}$ The amount of electricity consumed by the project biomass boiler(s) and ancillary

equipment during the period *p* [MWh/p]

EF_{elec} CO₂ emission factor of consumed electricity [tCO₂/MWh]

i Identification number of fossil fuel type [-]

$FC_{PJ,i,p}$	The amount of fossil fuel consumed by the project biomass boiler(s) for the fuel
	type i during the period p [mass or volume/p]
NCV _{fuel,PJ,i}	Net calorific value of fossil fuel used by the project biomass boiler(s) for the fuel
	type i [GJ/mass or volume]
$EF_{fuel,PJ,i}$	CO ₂ emission factor of fossil fuel used by the project biomass boiler(s) for the
	fuel type i [tCO ₂ /GJ]
j	Identification number of the round trip for biomass transportation between the
	place of biomass supplier's stockyard and the project site [-]
$D_{j,p}$	Round trip distance of the biomass transportation j during the period p [km]
$m_{j,p}$	Mass of biomass transported in the biomass transportation j during the period p
	[t]
<i>EF</i> _{tr}	CO ₂ emission factor for biomass transportation [tCO ₂ /(t·km)]

^{*} If the round trip distance for biomass transportation $D_{j,p}$ is less than 200 km and the total rated thermal output of the project biomass boiler(s) is equal to or less than 45 MW, the emissions from the transportation may be neglected.

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$
 ER_p Emission reductions during the period p [tCO₂/p]

 RE_p Reference emissions during the period p [tCO₂/p]

 PE_p Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
h"steam	Specific enthalpy of produced steam [kJ/kg].	Saturated steam table based
		on "IAPWS Industrial
		Formulation" (e.g. steam
		table published by The Japan
		Society of Mechanical

		Engineers), using the values
		for setting steam pressure
		according to vendor
		specification or operation
		manual on the site.
h' _{water}	Specific enthalpy of feed water [kJ/kg].	(In case that hot water
	Calculated based on the following equation:	recovered by drain recovery
	$h'_{water} = T_{FW} \times C_p$	system is not reused for feed
	Where:	water into project biomass
	T_{FW} Temperature of feed water [°C]	boiler(s))
	C_p Specific heat capacity of water [kJ/(kg·°C)]	The highest air temperature
	$(=4.184 \text{ kJ/(kg} \cdot ^{\circ}\text{C}))$	recorded in Thailand by the
		Thai Meteorological
		Department is applied to T_{FW}
		for conservativeness.
		(In case that hot water
		recovered by drain recovery
		system is reused for feed
		water into project biomass
		boiler(s))
		T_{FW} is fixed at the values
		taken from implementation
		plan or operation manual on
		the site for feed water into
		project biomass boiler(s).
		C_p : Theoretical value
		provided in table 6 of Cabinet
		Order No. 357 of 1992, Japan
$\eta_{\it RE}$	Reference boiler efficiency [%].	JCM approved methodology
	The default value is set to 89%.	TH_AM009.
		The value is derived from the
		survey. It is revised if deemed
		necessary by the Joint
		Committee.
EF _{fuel,RE}	CO ₂ emission factor for fossil fuel consumed by	In the order of preference:

the reference boiler [tCO₂/GJ]. CO₂ emission a) regional or national default factor of natural gas is applied in this values; or b) IPCC methodology in a conservative manner. default values provided in table 1.4 of Ch.1 Vol.2 2006 **IPCC** of Guidelines on National GHG Inventories. Lower value is applied. EF_{elec} CO₂ emission factor of consumed electricity. Case 1) When the project biomass boiler(s) consumes [Grid electricity] only 1) grid electricity, 2) captive electricity or 3) most recent value electricity directly supplied from other sources available at the time of (e.g. independent power producer (IPP), small validation is applied and power producer (SPP) and very small power fixed for the monitoring producer (VSPP)) to the project site, the project period thereafter. The data is participant applies the CO2 emission factor sourced from "Grid Emission Factor (GEF) of Thailand", respectively. When the project biomass boiler(s) may consume endorsed by Thailand electricity supplied from more than 1 electric Greenhouse Gas source, the project participant applies the CO₂ Organization Management emission factor with the lowest value. (TGO) unless otherwise instructed by Joint the [CO₂ emission factor] Committee. Case 1) Grid electricity The most recent value available from the source Case 2) stated in this table at the time of validation [Captive electricity including cogeneration system] Case 2) Captive electricity including For Option a) cogeneration system Specification of the captive power generation EF_{elec} is determined based on the following system options: provided by the manufacturer a) Calculated from its power generation (η_{elec} [%]). CO₂ emission efficiency (η_{elec} [%]) obtained from factor of the fossil fuel type manufacturer's specification. used in the captive power generation system (EF_{fuel} The power generation efficiency based on lower heating value (LHV) of the captive power [tCO₂/GJ])

generation system from the manufacturer's

specification is applied;

$$EF_{gen} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF_{elec}	0.8 *1	0.46
Li elec	0.0 *1	*2

^{*1} The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO₂ emission factor for natural gas

For Option b)

Generated and supplied electricity by the captive power generation system $(EG_{PL,p} \text{ [MWh/p]}).$

Fuel amount consumed by the captive power generation system ($FC_{PJ,p}$ [mass or volume/p]).

Net calorific value (NCV_{fuel} [GJ/mass or volume]) and CO_2 emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Upper value is applied.

[Captive electricity with diesel fuel]
CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas. CDM Methodological tool

	(0.0543tCO ₂ /GJ), and the most efficient value of	"Determining the baseline
	default efficiency for off-grid gas turbine systems	efficiency of thermal or
	(42%) are applied.	electric energy generation
		systems version 02.0" for the
	Case 3) Electricity directly supplied from	default efficiency for off-grid
	other sources including cogeneration system	power plants.
	EF_{elec} is determined based on the following	
	options:	Case 3)
	a) The value provided by the electricity supplier	[Electricity directly supplied from other sources including
	with the evidence;	cogeneration system]
	b) The value calculated in the same manner for	For Option a)
	the option a) of 2) captive electricity as	The evidence stating
	instructed above;	information relevant to the
	c) The value calculated in the same manner for	value of emission factor (e.g.
	the option b) of 2) captive electricity as	data of power generation,
	instructed above;	type of power plant, type of
	When the project biomass boiler(s) may consume	fossil fuel, period of time).
	electricity supplied from more than 1 electric	
	source, the project participant applies the CO ₂	
	emission factor with the lowest value.	
NCV _{fuel,PJ,i}	Net calorific value of fossil fuel used by the	In the order of preference:
	project biomass boiler(s) for the fuel type i	a) values provided by the fuel
	[GJ/mass or volume]	supplier;
		b) measurement by the
		project participants;
		c) regional or national default
		values; or
		d) IPCC default values
		provided in table 1.2 of Ch.1
		Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Upper value is
		applied.
EF _{fuel,PJ,i}	CO ₂ emission factor of fossil fuel used by the	In order of preference:
. "	project biomass boiler(s) for the fuel type i	a) values provided by the fuel
	[tCO ₂ /GJ]	supplier;
		b) measurement by the
		<u> </u>

		project participants; c) regional or national default values; or d) IPCC default values
		provided in table 1.4 of Ch.1
		Vol.2 of 2006 IPCC Guidelines on National GHG
		Inventories. Upper value is
		applied.
<i>EF</i> _{tr}	CO ₂ emission factor for biomass transportation	CDM methodological tool
	[tCO ₂ /(t·km)]	"TOOL 12: Project and
		leakage emissions from
	The default value in the following table is applied.	transportation of freight,
	Vehicle class $EF_{tr}[tCO_2/(t\cdot km)]$	version 01.1.0"
	Light vehicles 0.000245	
	Heavy vehicles 0.000129	
	Light vehicles: Vehicles with a gross vehicle mass	
	being less or equal to 26 tonnes.	
	Heavy vehicles: Vehicles with a gross vehicle	
	mass being higher than 26 tonnes.	
	If both vehicle classes are used in the project, the	
	larger value (0.000245 tCO ₂ /(t·km)) is applied.	

History of the document

Version	Date	Contents revised
01.0	14/07/2025	Electronic decision by the Joint Committee
		Initial approval.