JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Kingdom of Thailand		
Name of the methodology proponents	Institute for Global Environmental Strategies		
submitting this form	(IGES)		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable- / non-		
Methodology applies	renewable sources)		
Title of the proposed methodology, and	Waste heat recovery and utilization by installing		
version number	heat exchanger to heat recovery steam generator		
	of gas co-generation system, Ver. 01.0		
List of documents to be attached to this	The attached draft JCM-PDD:		
form (please check):	Additional information		
Date of completion	28/04/2022		

History of the proposed methodology

Version	Date	Contents revised
01.0	28/04/2022	First Edition

A. Title of the methodology

Waste heat recovery and utilization by installing heat exchanger to heat recovery steam generator of gas co-generation system, Ver. 01.0

B. Terms and definitions

Terms	Definitions	
Gas co-generation System	A system is composed of gas turbine and heat recovery steam	
	generator equipped with duct burner.	
	By recovering waste heat of exhaust gas emitted by gas turbine,	
	steam is generated being supported by duct burner.	
Heat recovery steam	Heat recovery steam generator (HRSG) is a waste heat recovery	
generator (HRSG)	boiler which utilizes waste heat of exhaust gas emitted by gas	
	turbine as heat source.	
Duct burner	Duct burner is an equipment which additionally burns fossil gas	
	fuel to support heat source of HRSG	
Heat exchanger	Heat exchanger is a mechanical device that recovers and	
	transfers the waste heat from HRSG to the incoming feed water	
	of heat recovery steam generator, which increases the overall	
	boiler's thermal efficiency.	

C. Summary of the methodology

Items	Summary		
GHG emission reduction	By installing heat exchanger(s) to heat recovery steam		
measures	generator of gas co-generation system(s), feed water into heat		
	recovery steam generator is heated up. Consequently,		
	consumption of fossil gas fuel by duct burner is reduced,		
	leading to the reduction of GHG emissions.		
Calculation of reference	Reference emissions are calculated using amount of fossil gas		
emissions	fuel consumed by duct burner of heat recovery steam generator		
	with project heat exchanger, density of fossil gas fuel consumed		
	by duct burner of heat recovery steam generator, net calorific		

	value of fossil gas fuel consumed by duct burner of heat		
	recovery steam generator, CO ₂ emission factor for the fossil gas		
	fuel consumed by duct burner of heat recovery steam generator,		
	amount of heating energy recovered by project heat exchanger		
	and amount of heating energy transferred into the feed water of		
	the heat recovery steam generator with project heat exchanger.		
Calculation of project	t (In case that project additionally consumes electricity) Project		
emissions	emissions are calculated with electricity consumption of pre-		
	treatment equipment(s) and CO ₂ emission factor for electricity		
	consumed.		
Monitoring parameters	• Amount of fossil gas fuel consumed by duct burner of heat		
	recovery steam generator with project heat exchanger		
	• Flow rate of feed water into project heat exchanger		
	• Temperature of water at the outlet of project heat exchanger		
	• Temperature of water at the inlet of project heat exchanger		
	• Flow rate of feed water into heat recovery steam generator		
	with project heat exchanger		
	• Temperature of feed water into heat recovery steam		
	• Temperature of feed water into heat recovery steam generator with project heat exchanger		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project installs heat exchanger(s) to heat up feed water into heat recovery steam
	generator in gas co-generation system.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fossil gas fuel consumed by duct burner(s) to generate the amount of	CO ₂	
heating energy recovered by project heat exchanger and utilized for heat		
supply		
Project emissions		

Emission sources	GHG types
Electricity consumed by project	CO ₂

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

By implementing the project, the amount of fossil gas fuel consumed by duct burner of heat recovery steam generator (HRSG) is reduced because the temperature of feed water into HRSG is increased by heat recovered by project heat exchanger. The amount of waste heat from exhaust gas of gas turbine into heat recovery steam generator is more of the same as the one without in the absence of the project.

Heating energy saved by the project is almost only from fossil gas fuel consumed by duct burner.

However, in this methodology, the total amount of heating energy saved by the project is distributed into the one from fossil gas fuel consumed by duct burner and the one of waste heat from exhaust gas of gas turbine by a certain ratio. That means that the waste heat from the gas turbine is easily transferred to the steam, and the amount of saving fossil gas fuel consumed by duct burner is conservatively identified.

This concept is applied to the equation for calculating reference emissions in order to ensure net emission reductions.

F.2. Calculation of reference emissions

$$\begin{split} RE_{p} &= \sum_{i} FC_{db,PJ,i,p} \times D_{gas} \times NCV_{gas} \times EF_{gas,fuel} \times QHR_{he,PJ,i,p}/QHT_{fw,PJ,i,p}/1000 \\ QHR_{he,PJ,i,p} &= F_{he,PJ,i,p} \times (TO_{hei,p} - TI_{he,i,p}) \times C_{p}/1000 \\ QHT_{fw,PJ,i,p} &= F_{fw,i,p} \times (h''_{steam,i} - h'_{fw,PJ,i,p}) \\ h'_{fw,PJ,i,p} &= (T_{fw,PJ,i,p} - 0) \times C_{p}/1000 \end{split}$$

Where;

 RE_p : Reference emissions during the period p [tCO₂/p]

$FC_{db,PJ,i,p}$:	Amount of fossil gas fuel consumed by duct burner of heat recovery steam
		generator with project heat exchanger <i>i</i> during the period $p [Nm^{3}/p]$
D_{gas}	:	Density of fossil gas fuel consumed by duct burner of heat recovery steam
		generator [kg/Nm ³]
NCV_{gas}	:	Net calorific value of fossil gas fuel consumed by duct burner of heat
		recovery steam generator [GJ/t]
$EF_{gas,fuel}$:	CO_2 emission factor for the fossil gas fuel consumed by duct burner of
		heat recovery steam generator [tCO ₂ /GJ]
QHR _{he,PJ,i,p}	:	Amount of heating energy recovered by project heat exchanger <i>i</i> during
		the period p [GJ/p]
$F_{he,PJ,i,p}$:	Flow rate of feed water into project heat exchanger i during the period p
		[t/p]
TO _{he,PJ,i,p}	:	Temperature of water at the outlet of project heat exchanger <i>i</i> during the
		period <i>p</i> [degree Celsius]
TI _{he,PJ,i,p}	:	Temperature of water at the inlet of project heat exchanger i during the
		period <i>p</i> [degree Celsius]
C_p	:	Specific heat capacity of water $[MJ/(t \cdot \Delta^{\circ}C)]$
QHT _{fw.PL} i.p		Amount of heating energy transferred into the feed water of the heat
, , , , , , , , , , , , , , , , , , ,		recovery steam generator with project heat exchanger <i>i</i> during the period
		<i>p</i> [GJ/p]
$F_{fw,i,p}$:	Flow rate of feed water into the heat recovery steam generator with project
		heat exchanger <i>i</i> during the period p [t/p]
h'' _{steam,i}	:	Specific enthalpy of steam supplied by the heat recovery steam generator
		with project heat exchanger i [GJ/t]
$h'_{fw,PJ,i,p}$:	Specific enthalpy of feed water into heat recovery steam generator with
		project heat exchanger <i>i</i> during the period p [GJ/t]
$T_{fw,PJ,i,p}$:	Temperature of feed water into the heat recovery steam generator with
		project heat exchanger <i>i</i> during the period <i>p</i> [degree Celsius]
i	:	Identification number of the project heat exchanger

G. Calculation of project emissions

$$PE_p = EC_{PI,p} \times EF_{elec}$$

Where;

PE_p	:	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,p}$:	Amount of electricity consumed by project heat exchanger(s) during the
		period p [MWh/p]
EF_{elec}	:	CO2 emission factor of consumed electricity [tCO2/MWh]

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$
Where;	
ER_p	: Emission reductions during the period <i>p</i> [tCO ₂ /p]
RE_p	: Reference emissions during the period p [tCO ₂ /p]
PE_p	: Project emissions during the period <i>p</i> [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
Dgas	Density of the fossil gas fuel consumed	In the order of preference:
	by duct burner of heat recovery steam	a) values provided by fuel supplier;
	generator [kg/Nm ³]	b) measurement by the project
		participants; or
		c) regional or national default
		values;
NCV _{gas}	Net calorific value of the fossil gas fuel	In the order of preference:
	consumed by duct burner of heat	a) values provided by fuel supplier;
	recovery steam generator [GJ/t]	b) measurement by the project
		participants;
		c) regional or national default
		values; or
		d) IPCC default values provided in
		table 1.2 of Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Lower value is applied.

EF _{gas,fuel}	CO ₂ emission factor for the fossil gas	In the order of preference:
	fuel consumed by duct burner of heat	a) values provided by fuel supplier;
	recovery steam generator [tCO ₂ /GJ]	b) measurement by the project
		participants;
		c) regional or national default
		values; or
		d) IPCC default values provided in
		table 1.4 of Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Lower value is applied.
C _p	Specific heat capacity of water	Theoretical value provided in table 6
	$[MJ/(t \cdot \Delta^{\circ}C)]$	of Cabinet Order No. 357 of 1992,
	A default value is set to 4.184	Japan
	$[MJ/(t \cdot \Delta^{\circ}C)]$	
h" _{steam,i}	Specific enthalpy of steam supplied by	Saturated steam table based on
	the heat recovery steam generator with	"IAPWS Industrial Formulation"
	project heat exchanger <i>i</i> [GJ/t]	(e.g. steam table published by The
		Japan Society of Mechanical
		Engineers), using the values for
		setting steam pressure according to
		vendor specification, contract
		condition by the steam buyer or
		operation manual on the site.
EF_{elec}	CO ₂ emission factor of consumed	Grid electricity:
	electricity [tCO ₂ /MWh].	The most recent value available at
		the time of validation is applied and
	When project heat exchanger (s)	fixed for the monitoring period
	consumes only 1) grid electricity, 2)	thereafter. The data is sourced from
	captive electricity or 3) electricity	"Grid Emission Factor (GEF) of
	directly supplied from small power	Thailand", endorsed by Thailand
	producer (SPP) to the project site	Greenhouse Gas Management
	through its internal grid (e.g. industrial	Organization, unless otherwise
	park), the project participant applies the	instructed by the Joint Committee.
	CO ₂ emission factor respectively.	
		Captive electricity:
	When project heat exchanger(s) may	For the option a)
	consume electricity supplied from more	Specification of the captive power

than 1 electric source, the project	generation system connected to the
participant applies the CO2 emission	boiler, provided by the manufacturer
factor with highest value.	$(\eta_{cap} \ [\%]).$
	CO ₂ emission factor of the fuel
[CO ₂ emission factor]	consumed by the captive power
For 1) grid electricity: The most recent	generation system connected to the
value available from the source stated in	boiler ($EF_{fuel,cap}$ [tCO ₂ /GJ]) in order
this table at the time of validation.	of preference:
	1) values provided by the fuel
For 2) captive electricity:	supplier;
It is determined based on the following	2) measurement by the project
options:	participants;
	3) regional or national default
a) Calculated from its power generation	values;
efficiency (η_{cap} [%]) obtained from	4) IPCC default values provided in
manufacturer's specification	table 1.4 of Ch.1 Vol.2 of 2006 IPCC
The power generation efficiency based	Guidelines on National GHG
on lower heating value (LHV) of the	Inventories. Upper value is applied.
captive power generation system from	
the manufacturer's specification is	For the option b)
applied;	Generated and supplied electricity
$FF_{\pm} = 3.6 \times \frac{100}{2} \times FF_{c}$	by the captive power generation
η_{cap}	system connected to the biomass
	boiler(s) (EG_{cap} , [MWh/p]).
b) <u>Calculated from measured data</u>	Fuel amount consumed by the
The power generation efficiency	captive power generation system
calculated from monitored data of the	connected to the biomass boiler(s)
amount of fuel input for power	$(FC_{cap}, [mass or volume/p]).$
generation $(FC_{cap,p})$ and the amount of	Net calorific value (<i>NCV</i> _{fuel,cap}
electricity generated $(EG_{cap,p})$ during	[GJ/mass or volume]) and CO ₂
the monitoring period p is applied. The	emission factor of the fuel $(EF_{fuel,cap})$
measurement is conducted with the	[tCO ₂ /GJ]) in order of preference:
monitoring equipment to which	1) values provided by the fuel
calibration certificate is issued by an	supplier;
entity accredited under	2) measurement by the project
national/international standards;	participants;
	3) regional or national default

$EF_{elec} = FC_{cap,p} \times NCV_{fuel,cap}$	values;
$\times EF_{fuel,cap}$	4) IPCC default values provided in
1	tables 1.2 and 1.4 of Ch.1 Vol.2 of
$\overline{EG_{cap,p}}$	2006 IPCC Guidelines on National
	GHG Inventories. Upper value is
Where:	applied.
$NCV_{fuel,cap}$: Net calorific value of the	
fuel consumed by the captive power	For the option c)
generation system connected to the	CDM methodological tool "TOOL
boiler [GJ/mass or volume]	05: Baseline, project and/or leakage
	emissions from electricity
c) Conservative default value:	consumption and monitoring of
A value of 1.3 tCO ₂ /MWh is applied.	electricity generation, version 03.0"
For 3) electricity directly supplied from	Electricity directly supplied from
small power producer (SPP) , it is	SPP
determined based on the following	
options: a) The value provided by the	For option a) the evidence stating
SPP with the evidence; b) The value	information relevant to the value of
calculated in the same manner for the	emission factor e.g. data of power
option a) of 2) captive electricity as	generation, type of power plant, type
instructed above; c) The value	of fossil fuel, period of time.
calculated in the same manner for the	
option b) of 2) captive electricity as	
instructed above; When project heat	
exchanger may consume electricity	
supplied from more than 1 SPP, the	
project participant applies the CO_2	
emission factor with the highest value.	