Joint Crediting Mechanism Approved Methodology TH_AM018 "Waste heat recovery and utilization by installing heat exchanger to heat recovery steam generator of gas co-generation system"

A. Title of the methodology

Waste heat recovery and utilization by installing heat exchanger to heat recovery steam generator of gas co-generation system, Ver. 01.0

B. Terms and definitions

Terms	Definitions
Gas co-generation system	Gas co-generation system is a system which is composed of gas
	turbines and heat recovery steam generators equipped with duct
	burners.
	It generates steam by using recovered waste heat of exhaust gas
	emitted from gas turbines with supplemental use of duct
	burners.
Heat recovery steam	Heat recovery steam generator (HRSG) is a waste heat recovery
generator (HRSG)	boiler which utilizes waste heat of exhaust gas emitted by gas
	turbines as a heat source.
Duct burner	Duct burner is a device which additionally burns fuel gas to
	supplement the heat source of HRSGs.
Heat exchanger	Heat exchanger is a mechanical device that recovers and
	transfers the waste heat from HRSGs to feed water of HRSGs,
	which increases the overall boiler's thermal efficiency.

C. Summary of the methodology

Items	Summary	
GHG emission reduction	By installing heat exchanger(s) in HRSGs of gas co-generation	
measures	system(s), feed water into the HRSGs is heated up.	
	Consequently, consumption of fuel gas by duct burners is	

	reduced, leading to the reduction of GHG emissions.
Calculation of reference	Reference emissions are calculated using the amount of fuel gas
emissions	consumed by duct burners of HRSGs with project heat
	exchangers, density of fuel gas consumed by duct burners of
	HRSGs, net calorific value of fuel gas consumed by duct
	burners of HRSGs, CO2 emission factor for the fuel gas
	consumed by duct burners of HRSGs, the amount of heating
	energy recovered by project heat exchangers and the amount of
	heating energy transferred into the feed water of the HRSGs
	with project heat exchangers.
Calculation of project	(In case that the project additionally consumes electricity)
emissions	Project emissions are calculated with electricity consumption
	of heat exchangers, and CO ₂ emission factor for electricity
	consumed.
Monitoring parameters	• Amount of fuel gas consumed by duct burner of HRSGs
	with project heat exchanger
	• Flow rate of feed water into project heat exchanger
	• Temperature of water at the outlet of project heat exchanger
	• Temperature of water at the inlet of project heat exchanger
	• Flow rate of feed water into HRSGs generator with project
	heat exchanger
	• Temperature of feed water into HRSGs with project heat
	exchanger
	• Amount of electricity consumed by heat exchangers

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project installs heat exchanger(s) to heat up feed water into HRSGs in a gas co-
	generation system.
Criterion 2	Heat exchangers have not been installed to the gas co-generation system of the
	project prior to its implementation.

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types
Fuel gas consumed by duct burner(s) to generate the heating energy	CO ₂
equivalent to the energy recovered by project heat exchangers and	
utilized for heat supply	
Project emissions	
Emission sources	GHG types
Electricity consumed by heat exchangers	CO ₂

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

By installing heat exchangers, the amount of heating energy supplied to HRSGs is reduced because the temperature of feed water circulated to HRSGs is increased by heat recovered through the heat exchangers. As the amount of waste heat transferred from exhaust gas of gas turbines to HRSGs is not affected by installation of the heat exchangers, heating energy saved by the project is almost only from fuel gas consumed by duct burner. The business-as-usual (BaU) emissions are the emissions occurred when duct burners supply an equivalent amount of all the heating energy recovered by heat exchangers.

The net emission reductions are ensured in the following manner.

Although the reduction of heating energy is mostly achieved in duct burners in practice as mentioned above, this methodology assumes that it is achieved in both duct burners and waste heat from gas turbines in a certain ratio. Under this assumption, only the portion of the reductions for duct burners is considered as the reference emissions. This idea is applied to the equations for calculating reference emissions.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} FC_{db,PJ,i,p} \times D_{gas} \times NCV_{gas} \times EF_{gas,fuel} \times \frac{QHR_{he,PJ,i,p}}{QHT_{fw,PJ,i,p}} / 1000$$
$$QHR_{he,PJ,i,p} = F_{he,PJ,i,p} \times (TO_{he,i,p} - TI_{he,i,p}) \times C_{p} / 1000$$

		$QHT_{fw,PJ,i,p} = F_{fw,i,p} \times (h''_{steam,i} - h'_{fw,PJ,i,p})$
		$\langle \cdots \rangle W, P j, l, p \rangle \langle w, l, p \rangle \langle w \rangle steam, l \rangle \langle y W, P j, l, p \rangle$
		$h'_{fw,PJ,i,p} = T_{fw,PJ,i,p} \times C_p / 1000$
Where;		
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
$FC_{db,PJ,i,p}$:	Amount of fuel gas consumed by duct burners of the HRSG with project
		heat exchanger <i>i</i> during the period $p [Nm^3/p]$
D_{gas}	:	Density of fuel gas consumed by duct burners of HRSGs [kg/Nm ³]
NCVgas	:	Net calorific value of fuel gas consumed by duct burners of HRSGs [GJ/t]
$EF_{gas,fuel}$:	CO_2 emission factor for the fuel gas consumed by duct burners of HRSGs [t CO_2/GJ]
QHR _{he,PJ,i,p}	:	Amount of heating energy recovered by project heat exchanger i during the period p [GJ/p]
$F_{he,PJ,i,p}$:	Flow rate of feed water into project heat exchanger i during the period p
		[t/p]
TO _{he,PJ,i,p}	:	Temperature of water at the outlet of project heat exchanger <i>i</i> during the
		period p [°C]
TI _{he,PJ,i,p}	:	Temperature of water at the inlet of project heat exchanger <i>i</i> during the
		period <i>p</i> [°C]
C_p	:	Specific heat capacity of water $[MJ/(t \cdot \Delta^{\circ}C)]$
$QHT_{fw,PJ,i,p}$		Amount of heating energy transferred into the feed water of the HRSG
		with project heat exchanger i during the period p [GJ/p]
$F_{fw,i,p}$:	Flow rate of feed water into the HRSG with project heat exchanger i
		during the period p [t/p]
h'' _{steam,i}	:	Specific enthalpy of steam supplied by the HRSG with project heat
		exchanger <i>i</i> [GJ/t]
h' _{fw,PJ,i,p}	:	Specific enthalpy of feed water into the HRSG with project heat exchanger
		<i>i</i> during the period p [GJ/t]
$T_{fw,PJ,i,p}$:	Temperature of feed water into the HRSG with project heat exchanger <i>i</i>
		during the period p [°C]
i	:	Identification number of the project heat exchanger

G. Calculation of project emissions

Where;		$PE_p = EC_{PJ,p} \times EF_{elec}$
where,		
PE_p	:	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,p}$:	Amount of electricity consumed by project heat exchanger(s) during the
		period p [MWh/p]
EF _{elec}	:	CO ₂ emission factor of consumed electricity [tCO ₂ /MWh]

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$
Where;	
ER_p	: Emission reductions during the period p [tCO ₂ /p]
RE_p	: Reference emissions during the period <i>p</i> [tCO ₂ /p]
PE_p	: Project emissions during the period <i>p</i> [tCO ₂ /p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
Dgas	Density of the fuel gas consumed by duct	In the order of preference:
	burner of HRSGs [kg/Nm ³]	a) values provided by fuel supplier;
		b) measurement by the project
		participants; or
		c) regional or national default
		values;
NCV _{gas}	Net calorific value of the fuel gas	In the order of preference:
	consumed by duct burner of HRSGs	a) values provided by fuel supplier;
	[GJ/t]	b) measurement by the project
		participants;
		c) regional or national default

		1
		values; or
		d) IPCC default values provided in
		table 1.2 of Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Lower value is applied.
EF _{gas,fuel}	CO ₂ emission factor for the fuel gas	In the order of preference:
	consumed by duct burner of HRSGs	a) values provided by fuel supplier;
	[tCO ₂ /GJ]	b) measurement by the project
		participants;
		c) regional or national default
		values; or
		d) IPCC default values provided in
		table 1.4 of Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Lower value is applied.
C_p	Specific heat capacity of water	Theoretical value provided in table
	$[MJ/(t \cdot \Delta^{\circ}C)]$	6 of Cabinet Order No. 357 of 1992,
	A default value is set to 4.184	Japan
	$[MJ/(t \cdot \Delta^{\circ}C)]$	
h" _{steam,i}	Specific enthalpy of steam supplied by the	Saturated steam table based on
	HRSG with project heat exchanger <i>i</i>	"IAPWS Industrial Formulation"
	[GJ/t]	(e.g. steam table published by The
		Japan Society of Mechanical
		Engineers), using the values for
		setting steam pressure according to
		vendor specification, contract
		condition by the steam buyer or
		operation manual on the site.
EF _{elec}	CO_2 emission factor of consumed	Grid electricity:
	electricity [tCO ₂ /MWh].	The most recent value available at
		the time of validation is applied and
	When project heat exchanger(s) consumes	fixed for the monitoring period
	only 1) grid electricity, 2) captive	thereafter. The data is sourced from
	electricity or 3) electricity directly supplied	"Grid Emission Factor (GEF) of
	from small power producer (SPP) to the	Thailand", endorsed by Thailand
	project site through its internal grid (e.g.	Greenhouse Gas Management
	industrial park), the project participant	Organization, unless otherwise

	1
applies the CO ₂ emission factor respectively.	instructed by the Joint Committee.
respectively.	Captive electricity:
When project heat exchanger(s) may	For the option a)
consume electricity supplied from more	Specification of the captive power
than 1 electric source, the project	generation system provided by the
participant applies the CO ₂ emission factor	manufacturer (η_{cap} [%]).
with the highest value.	CO_2 emission factor of the fuel
	consumed by the captive power
[CO ₂ emission factor]	generation system $(EF_{fuel,cap})$
For 1) grid electricity: The most recent	[tCO ₂ /GJ]) in order of preference:
value available from the source stated in	1) values provided by the fuel
this table at the time of validation.	supplier;
	2) measurement by the project
For 2) captive electricity:	participants;
It is determined based on the following	3) regional or national default
options:	values;
	4) IPCC default values provided in
a) <u>Calculated from its power generation</u>	table 1.4 of Ch.1 Vol.2 of 2006 IPCC
efficiency (η_{cap} [%]) obtained from	Guidelines on National GHG
manufacturer's specification	Inventories. Upper value is applied.
The power generation efficiency based on	
lower heating value (LHV) of the captive	For the option b)
power generation system from the	Generated and supplied electricity
manufacturer's specification is applied;	by the captive power generation
$EF_{elec} = 3.6 \times \frac{100}{\eta_{cap}} \times EF_{fuel,cap}$	system (EG_{cap} , [MWh/p]).
η_{cap}	Fuel amount consumed by the
	captive power generation system
b) Calculated from measured data	(FC_{cap} , [mass or volume/p]).
The power generation efficiency calculated	Net calorific value (NCV _{fuel,cap}
from monitored data of the amount of fuel	[GJ/mass or volume]) and CO ₂
input for power generation $(FC_{cap,p})$ and	emission factor of the fuel $(EF_{fuel,cap})$
the amount of electricity generated	[tCO ₂ /GJ]) in order of preference:
$(EG_{cap,p})$ during the monitoring period p is	1) values provided by the fuel
applied. The measurement is conducted	supplier;
with the monitoring equipment to which	2) measurement by the project
calibration certificate is issued by an entity	participants;

accredited under national/international	3) regional or national default
standards;	values;
$EF_{elec} = FC_{cap,p} \times NCV_{fuel,cap}$	4) IPCC default values provided in
1	tables 1.2 and 1.4 of Ch.1 Vol.2 of
$\times EF_{fuel,cap} \times \frac{1}{EG_{cap,p}}$	2006 IPCC Guidelines on National
	GHG Inventories. Upper value is
Where:	applied.
<i>NCV</i> _{fuel,cap} : Net calorific value of the fuel	
consumed by the captive power generation	For the option c)
system connected to the boiler [GJ/mass or	CDM methodological tool "TOOL
volume]	05: Baseline, project and/or leakage
	emissions from electricity
c) <u>Conservative default value:</u>	consumption and monitoring of
A value of 1.3 tCO ₂ /MWh is applied.	electricity generation, version 03.0"
For 3) electricity directly supplied from	Electricity directly supplied from
	Littling an eerg supplied nom
small power producer (SPP),	SPP
small power producer (SPP),	
small power producer (SPP), It is determined based on the following	SPP
small power producer (SPP), It is determined based on the following options:	SPP For option a)
small power producer (SPP),It is determined based on the following options:a) The value provided by the SPP with the	SPP For option a) The evidence stating information
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; 	SPP For option a) The evidence stating information relevant to the value of emission
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above; 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above; c) The value calculated in the same manner 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above; c) The value calculated in the same manner for the option b) of 2) captive electricity as 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above; c) The value calculated in the same manner for the option b) of 2) captive electricity as instructed above. 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above; c) The value calculated in the same manner for the option b) of 2) captive electricity as instructed above. 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type
 small power producer (SPP), It is determined based on the following options: a) The value provided by the SPP with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above; c) The value calculated in the same manner for the option b) of 2) captive electricity as instructed above. When project heat exchangers may consume electricity supplied from more 	SPP For option a) The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type

History of the document

Version	Date	Contents revised
01.0	14/07/2025	Electronic decision by the Joint Committee
		Initial approval.