JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form				
Form for submitting the proposed methodology				
Host Country	The Kingdom of Thailand			
Name of the methodology proponents	Hitachi, Ltd.			
submitting this form				
Sectoral scope(s) to which the Proposed	2. Energy distribution			
Methodology applies				
Title of the proposed methodology, and	Low-carbon Operation for Power Grid			
version number	Utilizing Online Voltage-var(Q) Optimal			
	Control with ICT, Version 01.0			
List of documents to be attached to this form	The attached draft JCM-PDD:			
(please check):	Additional information			
	Steps to confirm validity of calculation method			
	of reference emissions			
Date of completion 10/08/2021				

History of the proposed methodology

Version	Date	Contents revised	
01.0	10/08/2021	First edition	

A. Title of the methodology

Low-carbon Operation for Power Grid Utilizing Online Voltage-var(Q) Optimal Control with ICT, Version 01.0

B. Terms and definitions

Terms	Definitions	
OPENVQ	OPENVQ stands for Optimized Performance Enabling	
	Network for Volt-var (Q).	
	OPENVQ is a software typically installed in power grid	
	control rooms that collects data of transmission system	
	online, forecasts the future system condition, automatically	
	calculates optimum voltage control profile, and controls	
	voltage and reactive power remotely after verifying the	
	stability of the transmission system.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to projects that aim at reducing	
measures	transmission loss by optimizing voltage and reactive power of	
	transmission system by introducing OPENVQ.	
Calculation of reference	Reference emissions are GHG emissions attributed to	
emissions	transmission loss calculated on the basis of historical voltage	
	profile, historical reactive power profile, and condition of	
	transmission system after implementation of the project.	
	Transmission loss is calculated by the calculation formula	
based on electric circuit theory, which is adopted by Electricit		
	Generating Authority of Thailand (EGAT). Voltage profile of	
	reference scenario is determined by the mode value calculated	
	from an analysis of distribution of the historical voltage	
	measured during a period of at least one year prior to the period	
	not earlier than 6 months before starting operation of the	

	project. Reactive power of reference scenario is determined		
	based on the reference voltage profile and active power of		
	transmission line measured after implementation of the project.		
Calculation of project	Project emissions are calculated on the basis of transmission		
emissions	loss calculated from the monitored values using the formula		
	based on electric circuit theory, which is adopted by EGAT.		
Monitoring parameters	Active power, reactive power, voltage, resistance, reactance,		
	susceptance of the transmission line, and the number of		
	transmission lines in the project area X.		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs OPENVQ to the control system of transmission network.			
Criterion 2	The project transmission network is one of the five regional networks served			
	by EGAT, in which each network is controlled by respective regional control			
	center (RCC). The project transmission network has delivery points which are			
	connected to the regional distribution network corresponding to each of the five			
	regions managed by Metropolitan Electricity Authority (MEA), and four			
	Provincial Electricity Authorities (PEA), Northeast, South, North, and Central,			
	respectively. The project transmission network consists of transmission lines of			
	500kV, 230kV, and 115kV, and substations.			
Criterion 3	The project transmission network is monitored and operated on-line, and the			
	data of active power, reactive power, voltage, resistance, and susceptance of the			
	transmission line is collected remotely.			
Criterion 4	The difference between reference transmission line loss calculated based on the			
	procedure described in F.2 and calculated transmission line loss based on the			
	data measured during sampling period is less than the difference between			
	measured substation loss and simulated substation loss in the case of installing			
	OPENVQ based on the data measured during sampling period. This is			
	confirmed by satisfying the following formula:			
	$PL_{RE,X,lines} - PL_{measured,X,lines}$			
	$< PL_{measured,X,substations} - PL_{OPENVQ,X,substations}$			
	$PL_{RE,X,lines}$ = Reference transmission line loss (W)			
	$PL_{measured,X,lines}$ = Measured transmission line loss in the			

sampling period (W)
$PL_{measured,X,substations}$ = Measured substation loss in the sampling
period (W)
$PL_{OPENVQ,X,substations}$ = Simulated substation loss in the case of
installing OPENVQ (W)
The detail steps to confirm validity of calculation method of reference
emissions are described in Additional Information.

E. Emission Sources and GHG types

Reference emissions			
Emission sources GHG types			
Transmission loss of transmission line	CO ₂		
Project emissions			
Emission sources	GHG types		
Transmission loss of transmission line	CO ₂		

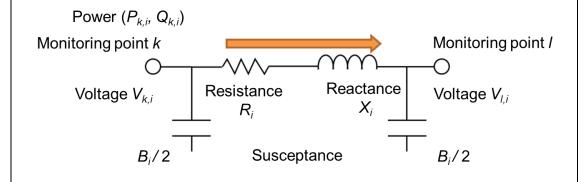
F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

By introduction of OPENVQ, transmission loss is reduced by optimizing voltage and reactive power of transmission system. Reference emissions attributed to reference transmission loss are calculated on the basis of historical voltage profile, historical reactive power profile, and condition of transmission network after implementation of the project. Transmission loss of transmission line i (PL_{line_i}) which connects bus k and bus l is calculated by the calculation formula of EGAT:

$$\begin{split} PL_{line_i} &= P_{k,i} + \tilde{P}_i \\ &\equiv f(P_{k,i}, Q_{k,i}, V_{k,i}, V_{l,i}, R_i, X_i, B_i), \end{split}$$

and intermediate formula is shown as below:


$$\begin{split} \tilde{P}_{i} &= \tilde{V}_{l} Y_{i} \cdot \cos \theta - V_{k,i} \cdot \tilde{V}_{l} Y_{i} \cdot \cos \left(\theta - \tilde{\theta}\right) \\ \tilde{V}_{l} &= \frac{V_{k,i}^{2} \cdot Y_{i} \cdot \cos \theta - P_{k,i}}{V_{k,i} \cdot Y_{i} \cdot \cos \left(\theta + \tilde{\theta}\right)} \end{split}$$

$$Y_i = \frac{1}{\sqrt{R_i^2 + X_i^2}}$$
$$\theta = -\tan^{-1} \frac{X_i}{R_i}$$
$$\tilde{\theta} = -\theta + \tan^{-1} \left(\frac{Q_{k,i} + V_{k,i}^2 \cdot Y_i \cdot \sin \theta + V_{k,i}^2 \cdot B_i/2}{V_{k,i}^2 \cdot Y_i \cdot \cos \theta - P_{k,i}} \right).$$

Where

PL_{line_i}	=	Transmission loss of transmission line i (W)
$P_{k,i}$	=	Active power at the bus k of transmission line i (W)
$Q_{k,i}$	=	Reactive power at the bus k of transmission line i (var)
$V_{k,i}$	=	Voltage measured at the bus k of transmission line i (V)
$V_{l,i}$	=	Voltage measured at the bus l of transmission line i (V)
Y_i	=	Admittance of transmission line i (S)
R_i	=	Resistance of transmission line $i(\Omega)$
X_i	=	Reactance of transmission line $i(\Omega)$
B_i	=	Susceptance of transmission line i (S)

Each parameter of transmission line i which connects bus k and bus l shows value described in the figure below:

Reference voltage profile is determined by identifying the mode value of the historical voltage of each transmission line. Mode value is calculated through analysis of histogram representing a distribution of the ratio of historical voltage to the base voltage. The historical voltage is measured for at least one year before implementation of the project. Reference voltage is determined by multiplying mode value of the ratio by the base voltage of each transmission line per transmission capacity.

Reactive power is derived by equation based on voltage profile, active power, and condition of

transmission system, as determined by resistance, reactance, and susceptance. Therefore, reactive power of reference scenario is determined based on the reference voltage profile, active power of transmission line measured after implementation of the project, and condition of transmission system after implementation of the project.

Ensuring net emission reduction

Through the introduction of OPENVQ, loss at the transmission lines and substations in the project network is expected to be reduced. The methodology ensures net emission reduction by not taking into account reduction of electricity consumption attributed to reduction of loss at the substations in the project network which occurs as a result of introduction of OPENVQ.

F.2. Calculation of reference emissions

$$RE_{p} = PL_{RE,X,lines,p} \times EF_{Grid}$$
(1)
Where

$$RE_{p} = Reference emission during the period p (tCO_{2}/p)$$

$$PL_{RE,X,lines,p} = Reference transmission line loss at transmission lines in the project
area X during the period p (MWh/p)
$$EF_{Grid} = CO_{2} \text{ emission factor for grid (tCO_{2}/MWh)}$$
(2)
Where

$$PL_{RE,X,lines,p} = \sum_{l=1}^{N} PL_{RE,line_{l},p}$$
(2)
Where

$$PL_{RE,line_{l},p} = Reference transmission line loss at transmission line i during the
period p (MWh/p)
N = Number of transmission lines in the project area X (-)
$$PL_{RE,line_{l},p} = \sum_{t=0}^{p} PL_{RE,line_{l},t} \times \frac{T}{60} \times 10^{-6}$$
(3)
Where

$$PL_{RE,line_{l},t} = Reference transmission line loss at transmission line i at the time t (W)
T = Measurement interval (min) (Fixed ex ante)
$$PL_{RE,line_{l},t} = f(P_{k,l,t}, Q_{RE,k,l,t}, V_{RE,k,l}, R_{l}, X_{l}, B_{l})$$
(4)
Where

$$PL_{RE,line_{l},t} = Active power at the bus k of transmission line i at the time t (W)$$$$$$$$

		(monitored)
$Q_{RE,k,i,t}$	=	Reference reactive power at the bus k of transmission line i at the time
		t (var) (calculated)
$V_{RE,k,i}$	=	Reference voltage at the bus k of transmission line i (V) (calculated)
$V_{RE,l,i,t}$	=	Reference voltage at the bus l of transmission line i at the time t (V)
		(calculated)
R_i	=	Resistance of transmission line $i(\Omega)$ (Fixed <i>ex ante</i>)
X_i	=	Reactance of transmission line $i(\Omega)$ (Fixed <i>ex ante</i>)
B_i	=	Susceptance of transmission line i (S) (Fixed <i>ex ante</i>)

Since active power will not be affected by the introduction of OPENVQ, active power measured during the project period $P_{k,i,t}$ is used to represent active power of reference scenario.

 R_{i} , X_{i} , B_{i} , are parameters related to the specification of the transmission lines. The measured value during the project period is used to represent the project transmission line.

Reference voltage $V_{RE,k,i}$, $V_{RE,l,i,t}$, and reference reactive power $Q_{RE,k,i,t}$ are derived by the following steps:

Step 1: Obtain voltage data $V_{k,i}$ (V) measured at bus k for each transmission line i which connects bus k and bus l in the project area for a certain day of each month for one year set at regular interval (total at least 12 days) prior to the period not earlier than 6 months before starting operation of OPENVQ.

Step 2: Calculate the ratio of $V_{k,i}$ to the base voltage $V_{base,i}$ (V) of transmission line *i*. The base voltage $V_{base,i}$ is the rated voltage of buses which are connected by transmission line *i*.

$$Ratio_k = \frac{V_{k,i}}{V_{base,i}} \tag{5}$$

Step 3: Plot all obtained values of $Ratio_{k_{c}}$ (-) for all transmission lines in the project area with an interval of 0.01 which can be demonstrated in the form of a histogram.

Step 4: Select the most frequently observed value of *Ratio_{mode}* (-).

Step 5: Calculate reference voltage $V_{RE,k,i}$ by multiplying *Ratio_{mode}* by the base voltage $V_{base,i}$ of transmission line *i*.

$$V_{RE,k,i} = Ratio_{mode} \cdot V_{base,i} \tag{6}$$

Step 6: Reference voltage at bus *l* is calculated as a function of $V_{RE,k,i}$.

$$V_{RE,l,i,t} = V_{RE,k,i} - X_i \cdot Q_{k,i,t} \tag{7}$$

Where

 $Q_{k,i,t}$ = Reactive power at the bus k of transmission line i at the time t (var) (monitored)

Step 7:

Reference reactive power $(Q_{RE,k,i,t})$ is derived by the following equations:

$$Q_{RE,k,i,t} = Y_i \cdot V_{RE,k,i}^2 \cdot \sin\phi - Y_i \cdot V_{RE,k,i} \cdot V_{RE,l,i,t} \cdot \sin(\delta + \phi) - \frac{B_i}{2} \cdot V_{RE,k,i}^2$$
(8)

$$\delta = \sin^{-1} \frac{X_i \cdot P_{k,i,t}}{V_{RE,k,i} \cdot V_{l,i,t}} \tag{9}$$

$$\phi = \tan^{-1} \frac{X_i}{R_i} \tag{10}$$

$$Y_i = \frac{1}{\sqrt{R_i^2 + X_i^2}}$$
(11)

Where

$Q_{RE,k,i,t}$	=	Reference reactive power at the bus k of transmission line i at the time
		t (var) (calculated)
Y_i	=	Admittance of transmission line i (S)
$V_{RE,k,i}$	=	Reference voltage at the bus k of transmission line i (V) (calculated)
$V_{RE,l,i,t}$	=	Reference voltage at the bus l of transmission line i at the time t (V)
		(calculated)
ϕ	=	Impedance angle (rad) (calculated)
δ	=	Phase angle (rad) (calculated)
$V_{l,i,t}$	=	Voltage measured at the bus l of transmission line i at the time t (V)
		(monitored)
$P_{k,i,t}$	=	Active power at the bus k of transmission line i at the time t (W)
		(monitored)
R_i	=	Resistance of transmission line $i(\Omega)$ (Fixed <i>ex ante</i>)
X_i	=	Reactance of transmission line $i(\Omega)$ (Fixed <i>ex ante</i>)
B_i	=	Susceptance of transmission line <i>i</i> (S) (Fixed <i>ex ante</i>)

$$PE_{p} = PL_{pJ,X,lines,p} \times EF_{Grid}$$
(12)

$$PL_{pJ,X,lines,p} = \sum_{i=1}^{N} PL_{PJ,line_{i}p}$$
(13)
Where

$$PE_{p} = Project emission during the period p (tCO_{2}/p)$$

$$PL_{pJ,X,lines,p} = Project transmission line loss at transmission lines in the project area X during the period p (MWh/p)
$$EF_{Grid} = CO_{2} \text{ emission factor for grid (tCO_{2}/MWh)}$$

$$PL_{pJ,line_{i}p} = Project transmission line loss at transmission line i during the period p (MWh/p)
$$N = \text{Number of transmission lines in the project area X(-)}$$

$$PL_{PJ,line_{i}t} = \text{Project transmission lines in the project area X(-)}$$

$$PL_{pJ,line_{i}t} = \text{Project transmission line loss at transmission line i at the time t (W)}$$

$$T = \text{Measurement interval (min)}$$

$$PL_{pJ,line_{i}t} = f(P_{k,i,t}Q_{k,i,t}V_{k,i,t}R_{i,X_{i}}B_{i})$$
(15)
Where

$$PL_{pJ,line_{i}t} = \text{Active power at the bus k of transmission line i at the time t (W) (monitored) Q_{k,i} = \text{Reactive power at the bus k of transmission line i at the time t (V) (monitored) V_{k,i,i} = \text{Voltage measured at the bus k of transmission line i at the time t (V) (monitored) V_{k,i,i} = \text{Voltage measured at the bus k of transmission line i at the time t (V) (monitored) R_{i} = \text{Reactince of transmission line i (\Omega) (Fixed ex ante)}$$

$$R_{i} = \text{Reactance of transmission line i (S) (Fixed ex ante)}$$$$$$

$ER_p = RE_p$	$_p - PE_p$	(16)
Where		
ER_p	= Emission reduction during the period p (tCO ₂ /p)	
RE_p	= Reference emission during the period p (tCO ₂ /p)	
PE_p	= Project emission during the period p (tCO ₂ /p)	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{Grid}	CO ₂ emission factor for grid (tCO ₂ /MWh)	[Grid electricity]
		The most recent value available
		at the time of validation is
		applied and fixed for the
		monitoring period thereafter. The
		data is sourced from "Grid
		Emission Factor (GEF) of
		Thailand", endorsed by Thailand
		Greenhouse Gas Management
		Organization, unless otherwise
		instructed by the Joint
		Committee.
Ratio _{mode}	Mode value of $Ratio_k$ of $V_{k,i}$ to the base	Calculated based on the
	voltage $V_{base,i}$ of transmission line i (-)	procedure described in F.2.
R_i	Resistance of transmission line $i(\Omega)$	The constant value of equivalent
		circuit which represents the
		condition of transmission line <i>i</i> .
X_i	Reactance of transmission line $i(\Omega)$	The constant value of equivalent
		circuit which represents the
		condition of transmission line <i>i</i> .
B_i	Susceptance of transmission line i (S)	The constant value of equivalent
		circuit which represents the
		condition of transmission line <i>i</i> .
Т	Measurement interval (min)	Predetermined measurement
		interval

V _{base,i}	Base voltage of transmission line i (V)	Specification of transmission
		line <i>i</i>
$V_{RE,k,i}$	Reference voltage at the bus k of	Calculated based on the
	transmission line <i>i</i>	procedure described in F.2.