JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Kingdom of Thailand	
Name of the methodology	FAST RETAILING CO., LTD.	
proponents submitting this form		
Sectoral scope(s) to which the	3. Energy demand	
Proposed Methodology applies		
Title of the proposed	Introduction of high energy efficient and high colour	
methodology, and version	rendering LED downlight/spotlight in indoor facilities,	
number	Version 01.0	
List of documents to be attached	The attached draft JCM-PDD:	
to this form (please check):	⊠Additional information	
Date of completion	05/01/2021	

History of the proposed methodology

Version	Date	Contents revised
01.0	05/01/2021	First edition

A. Title of the methodology

Introduction of high energy efficient and high colour rendering LED downlight/spotlight in indoor facilities, Version 01.0

B. Terms and definitions

Terms	Definitions	
LED light	LED light is a lighting fixture using a light-emitting diode	
	(LED), a semiconductor device that emits visible light when	
	an electric voltage is applied in the forward direction.	
Luminous flux	Luminous flux is the measure of the perceived power of the	
	total amount of light energy radiated from a light source in a	
	certain direction. The SI unit of luminous flux is the lumen	
	(lm).	
Luminous efficiency	Luminous efficiency is the capacity of light flux per watt,	
	which is calculated with the formula below.	
	Luminous efficiency [lm/W] = Luminous flux [lm] ÷ Rated	
	power consumption [W]	
Colour rendering index (CRI)	CRI is an index used to quantitatively measure light source's	
	ability to render the true colours of the object compared to a	
	natural light source. The index is measured from 0 to 100,	
	with a perfect 100 indicating that colours under the light	
	source appear the same as they would under natural sunlight.	
Downlight/Spotlight	Downlight is downward lighting directly embedded in	
	ceiling. Spotlight is downward lighting attached to ceiling-	
	mounted wiring ducts.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving	
measures	energy by introducing LED downlight/spotlight in indoor	
	facilities where high performance in colour rendering property	

	is required.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	lighting, calculated with power consumption of project lighting,	
	ratio of luminous efficiency of project/reference lighting and	
	CO ₂ emission factor for consumed electricity.	
Calculation of project	Project emissions are GHG emissions from using project	
emissions	lighting, calculated with power consumption of project lighting	
	and CO ₂ emission factor for consumed electricity.	
Monitoring parameters	Total power consumption of project lighting and/or opening	
	days of facilities where project lighting is installed	

D. Eligibility criteria				
This methodolo	This methodology is applicable to projects that satisfy all of the following criteria.			
Criterion 1	LED lighting is installed in indoor facilities.			
Criterion 2	The installed LED lighting is a downlight or spotlight type LED whose colour rendering index is equal to or higher than 85, and luminous efficiency is equal to or higher than the corresponding threshold value set in the table below.			
	Rated power consumption [W] Luminous efficiency of reference lighting [lm/W]	0≤x<40 73.6	x≥40 78.0	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference lighting	CO ₂	
Project emissions		
Emission sources	GHG types	
Power consumption by project lighting	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with power consumption of project lighting, ratio of luminous efficiency of project/reference lighting and CO2 emission factor for consumed electricity.

The luminous efficiency of reference lighting is conservatively set ex ante in the following manner to ensure the net emission reductions.

- 1. In Thailand, conventional High Intensity Discharge (HID) lighting is commonly chosen as lighting equipment in case that high performance in colour rendering property is required. However, LED lighting, which is more efficient than HID lighting, is adopted as reference lighting in this methodology for conservativeness.
- 2. The average luminous efficiency value of LED downlight/spotlight commercially available in the global market is defined as η_{RE} in each rated power consumption range, as described in Section I.

F.2. Calculation of reference emissions

-

$$RE_{p} = \sum_{i,j} \left(EC_{PJ,i,j,p} \times \frac{\eta_{PJ,i,j}}{\eta_{RE,i,j}} \right) \times EF_{elec,i}$$

$$RE_{p} : Reference emissions during the period p [tCO_2/p]$$

$$i : Identification number of the facility$$

$$j : Identification number of the group of project lighting of the same model$$

$$EC_{PJ,i,j,p} : Power consumption of project lighting for group j in the facility i during the period p [MWh/p]$$

$$\eta_{PJ,i,j} : Luminous efficiency per unit of project lighting for group j in the facility i [Im/W]$$

$$\eta_{RE,i,j} : Luminous efficiency per unit of reference lighting for group j in the facility i [Im/W]$$

$$EF_{elec,i} : CO_{2} emission factor for consumed electricity in the facility i [tCO_{2}/MWh]$$

$$EC_{PJ,i,j,p} \text{ is calculated as described below (Option 1 or 2).}$$

$$Coption 1. If total power consumption of project lighting is measured for the facility i,
$$EC_{PJ,i,j,p} = EC_{PJ,i,total,p} \times \frac{P_{PJ,i,j} \times n_{PJ,i,j}}{P_{PJ,i,total}}$$

$$P_{PJ,i,total} = \sum_{j} (P_{PJ,i,j} \times n_{PJ,i,j})$$

$$EC_{PJ,i,imal,p} : Total power consumption of project lighting in the facility i during the period$$$$

	<i>p</i> [MWh/p]
$P_{PJ,i,total}$: Total rated power consumption in the facility <i>i</i> [W]
$P_{PJ,i,j}$: Rated power consumption per unit of project lighting for group <i>j</i> in the facility <i>i</i> [W]
n _{PJ,i,j}	: Number of the unit of project lighting for group <i>j</i> in the facility <i>i</i>
- Option 2.	Otherwise,
	$EC_{PJ,i,j,p} = P_{PJ,i,j} \times n_{PJ,i,j} \times 10^{-6} \times h_i \times D_{i,p}$
h_i	: Daily opening hours of the facility <i>i</i> [hour/day]
$D_{i,p}$: Opening days of the facility <i>i</i> during the period <i>p</i> [day/p]

G. Calculation of project emissions

$$PE_p = \sum_{i,j} EC_{PJ,i,j,p} \times EF_{elec,i}$$

PEp : Project emissions during the period p [tCO₂/p]
EC_{PJ,i,j,p} : Power consumption of project lighting for group j in the facility i during the period p [MWh/p]
EF_{elec,i} : CO₂ emission factor for consumed electricity in the facility i [tCO₂/MWh]

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$	
ER_p	: Emission reductions during the period p [tCO ₂ /p]	
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
PE_p	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$EF_{elec,i}$	CO ₂ emission factor for consumed electricity	[Grid electricity]
	in the facility <i>i</i> [tCO ₂ /MWh].	The most recent value
		available at the time of

When project LED consumes only 1) grid	validation is applied and fixed
electricity, 2) captive electricity or 3)	for the monitoring period
electricity directly supplied from small power	thereafter. The data is sourced
producer (SPP) to the project site through its	from "Grid Emission Factor
internal grid (e.g. industrial park), the project	(GEF) of Thailand", endorsed
participant applies the CO_2 emission factor	by Thailand Greenhouse Gas
respectively.	Management Organization
	unless otherwise instructed by
When project LED may consume electricity	the Joint Committee.
supplied from more than 1 electric source, the	
project participant applies the CO ₂ emission	[Captive electricity]
factor with the lowest value.	For the option a)
	Specification of the captive
[CO ₂ emission factor]	power generation system
For 1) grid electricity: The most recent value	connected to the facility <i>i</i> ,
available from the source stated in this table	provided by the manufacturer
at the time of validation	(η _{cap,i} [%]).
	CO ₂ emission factor of the fuel
For 2) captive electricity including	consumed by the captive
cogeneration system, it is determined based	power generation system
on the following options:	connected to the facility i
	$(EF_{fuel,cap.i} [tCO_2/GJ])$ in order
a) Calculated from its power generation	of preference:
efficiency ($\eta_{cap,i}$ [%]) obtained from	1) values provided by the fuel
manufacturer's specification	supplier;
The power generation efficiency based on	2) measurement by the project
lower heating value (LHV) of the captive	participants;
power generation system from the	3) regional or national default
manufacturer's specification is applied;	values;
$EF_{elec,i} = 3.6 \times \frac{100}{\eta_{cap,i}} \times EF_{fuel,cap,i}$	4) IPCC default values
$\eta_{cap,i}$	provided in tables 1.2 and 1.4
	of Ch.1 Vol.2 of 2006 IPCC
	Guidelines on National GHG
b) Calculated from measured data	Inventories. Lower value is
The power generation efficiency calculated	applied
from monitored data of the amount of fuel	
input for power generation $(FC_{cap,i,p})$ and the	For the option b)

amount of electricity generated $(EG_{cap,i,p})$	Generated and supplied
during the monitoring period p is applied. The	electricity by the captive power
measurement is conducted with the	generation system connected
monitoring equipment to which calibration	to the facility i (EG _{cap,i,p}
certificate is issued by an entity accredited	[MWh/p]).
under national/international standards;	Fuel amount consumed by the
$EF_{elec,i} = FC_{cap,i,p} \times NCV_{fuel,cap,i}$	captive power generation
$\times EF_{fuel,cap,i} \times \frac{1}{EG_{cap,i,p}}$	system connected to the
$EG_{cap,i,p}$	facility (FC _{cap,i,p} [mass or
Where:	volume /p]).
<i>NCV_{fuel,cap,i}</i> : Net calorific value of	Net calorific value (NCV $_{fuel, cap, i}$
consumed fuel [GJ/mass or volume]	[GJ/mass or volume]) and CO ₂
	emission factor of the fuel
Note:	$(EF_{fuel,cap,i} [tCO_2/GJ])$ in order
In case the captive electricity generation	of preference:
system meets all of the following conditions,	1) values provided by the fuel
the value in the following table may be	supplier;
applied to $EF_{elec,i}$ depending on the	2) measurement by the project
consumed fuel type.	participants;
	3) regional or national default
• The system is non-renewable generation	values;
system	4) IPCC default values
· Electricity generation capacity of the	provided in tables 1.2 and 1.4
system is less than or equal to 15 MW	of Ch.1 Vol.2 of 2006 IPCC
	Guidelines on National GHG
fuel type Diesel Natural gas	Inventories. Lower value is
<i>EF_{elec,i}</i> 0.8 *1 0.46 *2	applied.
*1 The most recent value at the time of	[Captive electricity with diese]
validation is applied.	fuel]
*2 The value is calculated with the equation	CDM approved small scale
in the option a) above. The lower value of	methodology: AMS-I.A.
default effective CO2 emission factor for	
natural gas (0.0543tCO2/GJ), and the most	[Captive electricity with
efficient value of default efficiency for off-	natural gas]
grid gas turbine systems (42%) are applied.	2006 IPCC Guidelines on
	National GHG Inventories for

	For 3) electricity directly	supplied from small	the source of EF of natural gas.
	For 3) electricity directly supplied from small power producer (SPP), it is determined based		CDM Methodological tool
	on the following options:		"Determining the baseline
	a) The value provided by the SPP with the		efficiency of thermal or
	evidence;		electric energy generation
	b) The value calculated in the same manner		systems version02.0" for the
	for the option a) of 2) captive electricity as		default efficiency for off-grid
	instructed above;		power plants.
	c) The value calculated in the same manner		power plants.
	for the option b) of 2) captive electricity as		[Electricity directly supplied
	instructed above;		from SPP]
	When project LED may consume electricity		For option a) the evidence
	supplied from more than 1 SPP, the project participant applies the CO ₂ emission factor		stating information relevant to
			the value of emission factor
	with the lowest value.		e.g. data of power generation,
			type of power plant, type of
			fossil fuel, period of time.
	Luminous efficiency per unit of project		Information prepared by
$\eta_{PJ,i,j}$	lighting for group j in the facility i [lm/W].		manufacturer (e.g. catalogs,
			specifications, or quotations)
η̃RE,i.j	Luminous efficiency per unit of reference		Value derived from the result
	lighting for group j in the facility i [lm/W].		of survey. The default value
			should be revised, if necessary.
	The default values for reference luminous		
	efficiency are set in the table below,		
	corresponding to the rated power		
	consumption of project l	ighting.	
	Rated power	Reference	
	consumption [W]	luminous	
		efficiency [lm/W]	
	$0 \le x < 40$	73.6	
	x ≥ 40	78.0	
	Rated power consumption per unit of project		Information prepared by
$P_{PJ,i,j}$	lighting for group <i>j</i> in the facility <i>i</i> [W].		manufacturer (e.g. catalogs,
			specifications, or quotations)
			-r sentencies, or quotations)

	Number of the unit of project lighting for	Information prepared by
N _{PJ,i.j}	group <i>j</i> in the facility <i>i</i> .	project participant (e.g. ledger,
		inventory or management
		record etc.)
h_i	Daily opening hours of the facility <i>i</i>	Information on the facility
	[hour/day].	where project lighting is
		installed.
	When the facility has more than one pattern	
	of opening hours, the shortest one is applied	
	conservatively.	