JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand
Name of the methodology proponents submitting this form	AGC Inc., AGC Chemicals (Thailand) Co.,Ltd.
Sectoral scope(s) to which the Proposed Methodology applies	3. Energy demand
Title of the proposed methodology, and version number	Introduction of High Efficiency Electrolyzer in Caustic Soda Production Plant, Version 01.0
List of documents to be attached to this form (please check):	\square \boxtimes The attached draft JCM-PDD:
Date of completion	QAdional information

History of the proposed methodology

Version	Date	Contents revised
01.0	$08 / 06 / 2020$	First edition

A. Title of the methodology

Introduction of High Efficiency Electrolyzer in Caustic Soda Production Plant, Version 01.0

B. Terms and definitions

Terms	Definitions
Electrolyzer	An equipment used for the electrolysis of sodium chloride solution, composed of an anode chamber, anode, cathode chamber, cathode, and an ion exchange membrane.
Ion-exchange membrane (IEM) technology	Method for the electrolysis of sodium chloride solution separating the cathode and anode chambers, in which a cation exchange membrane possesses special properties that permit only transmission of cations (positive ions) not of anions (negative ions).
Bipolar electrolyzer	Electrolyzer in which the elements are connected in series and the power supply is connected only to the end part of the electrolyzer.

C. Summary of the methodology

Items	Summary
GHG emission reduction measures	Installing ion-exchange membrane electrolyzer, which reduces electricity resistance of the electrolyzer unit and achieves electricity consumption reduction in the caustic soda process. This methodology applies to the project that introduces high efficiency electrolyzer in caustic soda production plant.
Calculation of reference emissions	Reference emissions are GHG emissions from using reference electrolyzer, calculated with electricity consumption of project electrolyzer, ratio of the performance guaranteed values of specific electricity consumptions (SECs) of reference/project electrolyzers and CO ${ }_{2}$ emission factor for consumed electricity.
Calculation of project emissions	Project emissions are GHG emissions from using project electrolyzer, calculated with electricity consumption of project

	electrolyzer and CO_{2} emission factor for electricity consumed.	
Monitoring parameters	$\bullet \quad$ Electricity consumption of project electrolyzer	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Bipolar electrolyzer(s), which employs an ion-exchange membrane technology, is installed in the manufacturing process of caustic soda.	
Criterion 2	SEC value of project electrolyzer under the standard conditions, $32 \% \mathrm{NaOH}$ and 90 degrees Celsius is less than threshold SEC value set in the table below under the standard conditions, $32 \% \mathrm{NaOH}$ and 90 degrees Celsius;	
	CD (Current density) [$\mathrm{kA} / \mathrm{m}^{2}$]	Threshold SEC value of the electrolyzer [$\mathrm{kWh}(\mathrm{DC}) / \mathrm{t}-\mathrm{NaOH}]$
	$4.0 \leq \mathrm{CD}<4.5$	2,013
	$4.5 \leq \mathrm{CD}<5.0$	2,038
	$5.0 \leq \mathrm{CD}<5.5$	2,061
	$5.5 \leq \mathrm{CD}<6.0$	2,086
	$6.0 \leq \mathrm{CD}<6.5$	2,110

SEC value of project electrolyzer is derived from performance guaranteed value provided by manufacturer.

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types
Electricity consumption of reference electrolyzer	CO_{2}
Project emissions	
Emission sources	CO_{2}
Electricity consumption of project electrolyzer	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying electricity consumption of project electrolyzer and ratio of SEC values of reference/project electrolyzer, and CO_{2} emission factor for consumed electricity. The SEC value of reference electrolyzer is conservatively set as a default value in the following manner to ensure net emission reductions.

All electrolyzers in the caustic soda process in Japan employ ion-exchange membrane technology, and the average of SEC values of the electrolyzers is $2,364 \mathrm{kWh}$ (DC)/t-NaOH (Japan Soda Industry Association, 2016).

The range of averaged SEC values of the bipolar electrolyzers in EU is from 2,191 kWh (DC)/tNaOH to $2,236 \mathrm{kWh}$ (DC)/t-NaOH based on the document "Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali, 2014" by assuming general AC/DC efficiency of 96% to 98% (European Commission, 2014).

The performance guaranteed values of SECs of possible model of bipolar electrolyzer available in Thailand were collected and averaged within the same CD ranges as those in the abovementioned document by European Commission ($2.9 \mathrm{kA} / \mathrm{m}^{2}$ to $5.4 \mathrm{kA} / \mathrm{m}^{2}$). Accordingly, the averaged SEC value is calculated as $1,999 \mathrm{kWh}(\mathrm{DC}) / \mathrm{t}-\mathrm{NaOH}$.

As a result, it is considered that the possible model of bipolar electrolyzer which is available in the country has comparable efficiency advantage as it has the lower SEC value than that of electrolyzers reported in the document published in EU. Hence it is determined to be the reference electrolyzer.

In order to make it comparable, the SEC values of reference and project electrolyzers are both based on performance guarantee.

Considering the fact that SEC values are positively correlated with CD, the reference SEC values are set into five range of CDs. The SEC values of the reference electrolyzer are determined as $2,013,2,038,2,061,2,086$ and $2,110 \mathrm{kWh}(\mathrm{DC}) / \mathrm{t}-\mathrm{NaOH}$ corresponding to the range of CDs of $4.0,4.5,5.0,5.5$ and $6.0 \mathrm{kA} / \mathrm{m}^{2}$ respectively.

F.2. Calculation of reference emissions

G. Calculation of project emissions

$$
P E_{p}=\sum_{i} E C_{P J, i, p} \times E F_{e l e c}
$$

$P E_{p}$	$:$	Project emissions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$
$E C_{P J, i, p}:$	Electricity consumption of the project electrolyzer i during the	
		period $p[\mathrm{MWh} / \mathrm{p}]$

H. Calculation of emissions reductions

$$
E R_{p}=R E_{p}-P E_{p}
$$

$E R_{p} \quad: \quad$ Emission reductions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$
$R E_{p} \quad: \quad$ Reference emissions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$
$P E_{p} \quad: \quad$ Project emissions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$S E C_{R E, i}$	SEC value of the reference electrolyzer i [$\mathrm{kWh}(\mathrm{DC}) / \mathrm{t}-\mathrm{NaOH}]$. The default value is set by the following table.	Additional information The default values are derived from the performance guaranteed value of possible model electrolyzer available in Thailand. The $S E C_{R E, i}$ should be revised if necessary from survey result which is conducted by the Joint Committee or project participants.
$S E C_{P J, i}$	SEC value of the project electrolyzer i $[\mathrm{kWh}(\mathrm{DC}) / \mathrm{t}-\mathrm{NaOH}]$.	Performance guaranteed value provided by manufacturer of the project electrolyzer.
$E F_{\text {elec }}$	CO_{2} emission factor for consumed electricity. When the project equipment consumes only grid electricity or captive electricity, the project participant applies the CO_{2} emission factor respectively. When the project equipment may consume both grid electricity and captive electricity, the project participant applies the CO_{2} emission factor with lower value. [CO_{2} emission factor] For grid electricity: The most recent value available from the source stated in this table at the time of validation	[Grid electricity] The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Grid Emission Factor (GEF) of Thailand", endorsed by Thailand Greenhouse Gas Management Organization unless otherwise instructed by the Joint Committee. [Captive electricity] For the option a) Specification of the captive

