JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand		
Name of the methodology proponents	NTT DATA INSTITUTE OF		
submitting this form	MANAGEMENT CONSLUTING, Inc.		
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Installation of inverter-controlled separate type		
version number	fridge showcase for convenience store(s)		
	Version01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	31/08/2019		

History of the proposed methodology

Version	Date	Contents revised
1.0	31/08/2019	Initial version

A. Title of the methodology

Installation of an inverter-controlled separate type fridge showcase for convenience store(s) Version01.0

B. Terms and definitions

Terms	Definitions
Inverter-controlled separate type	Inverter-controlled separate type fridge showcase is a type
fridge showcase	of fridge showcase of which condensing unit and showcase
	unit are separated, and the condensing unit equipped with
	inverter to control the speed of the compressor motor in
	order to maintain the temperature is located outside the
	store.
	The system includes the following:
	• Reach-in type fridge showcase (a structure to interrupt
	display room from outside air by glass type door)
	• Open type fridge showcase (a structure to interrupt
	display room from outside air by air curtain)
	• Walk in type fridge showcase (a structure which people
	can go in and fill groceries from behind the display
	shelves)
Coefficient of Performance	Coefficient of Performance (COP) is the cooling capacity
(COP)	per rated power consumption of the fridge showcase.
Part Load Ratio	Ratio of the actual cooling capacity and rated cooling
	capacity.
Degradation coefficient	Measure of efficiency loss due to compressor switching
	on/off control by constant speed compressor.

C. Summary of the methodology

Items Summary		Summary		
GHG	emission	reduction	This methodology applies to the project that aims for saving	
measu	energy of in-store showcase by introducing an inve		energy of in-store showcase by introducing an inverter-	

	controlled separate type fridge showcase for convenience
	store(s).
Calculation of reference	Reference emissions are GHG emissions from the reference
emissions	fridge showcase, non-inverter-controlled fridge showcase.
	Reference emissions from the reference fridge showcase are
	calculated with:
	• Electricity consumption of the project fridge showcase
	• Ratio of COPs of reference and project fridge showcase
	• Part Load ratio of the showcase
	Degradation coefficient
	• CO ₂ emission factor for consumed electricity.
Calculation of project	Project emissions are calculated with electricity consumption
emissions	of installed inverter-controlled separate type fridge showcase
	and CO ₂ emission factor for consumed electricity.
<i>Monitoring parameters</i> • Electricity consumption of project fridge showcase	
	• Operating time of the project fridge showcase (if
	applicable)

D. Eligibility criteria				
This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	Separate-type inv	verter-controlled fridge sho	owcase is newly ins	talled or installed
	to replace existin	g fridge showcase at conv	enience store(s).	
Criterion 2	COP of project	COP of project inverter-controlled separate type fridge showcase <i>i</i> under the		
	standard tempera	ture conditions* is more t	han the threshold (COP values set in
	the table below. ("x" in the table represents cooling capacity per unit.)			
		Cooling capacity [kW]	Reference COP	
		$3.0 \le x \le 15.0$	2.20	
		$15.0 < x \le 25.0$	1.83	
	*The standard temperature condition are as follows: Ambient temperature: 32 degrees Celsius Evaporative temperature: -10 degrees Celsius			
Criterion 3	Ozone Depletion	Potential (ODP) of the ref	rigerant used for pr	oject fridge show
	case is zero.			

Criterion 4	A plan for prevention of releasing refrigerant used for project separate-type
	fridge showcase is prepared. In the case of replacing the existing showcase with
	the project showcase, a plan for prevention of releasing refrigerant used in the
	existing showcase to the air (e.g. re-use of the equipment) is prepared.
	Execution of this plan is checked at the time of verification, in order to confirm
	that refrigerant used for the existing one replaced by the project is prevented
	from being released to the air.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption of the reference fridge showcase	CO_2	
Project emissions		
Emission sources	GHG types	
Electricity consumption of the project fridge showcase	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying electricity consumption of project invertercontrolled separate type showcase, ratio of energy efficiency (COPs) of project/reference showcase, part load ratio of the showcase, Degradation coefficient (C_D), and CO_2 emission factor for consumed electricity.

In this methodology, energy saving effects through the inverter are conservatively calculated to ensure the net emission reductions.

- The value of C_D is conservatively set as a default value according to the survey on the standard of air conditioner.
- The effects of the improvement of efficiency in operation by inverter control in part load conditions are not taken into account.

F.2. Calculation of reference emissions

For calculation of reference emissions, either Option 1 or Option 2 is selected.

If operating time of project fridge showcase can be measured, Option 2 may be selected.

Option 1

$$RE_{p} = \sum_{i} \sum_{j} \left[EC_{pj,i,j,p} \times \frac{COP_{pj,i,j}}{COP_{ref,i,j}} \right] \times EF_{elec}$$

RE_p	: Reference emissions of fridge showcase during the period p [tCO ₂ /p]		
$EC_{pj,i,j,p}$: Electricity consumption of the project fridge showcase j at the		
	convenience store <i>i</i> during the period <i>p</i> [MWh/p]		
<i>EF_{elec}</i>	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]		
$COP_{pj,i,j}$: COP of the project fridge showcase <i>j</i> at the convenience store <i>i</i> [-]		
$COP_{ref,i,j}$: COP of the reference fridge showcase j at the convenience store i [-]		
i	: Identification number of the convenience store [-]		
j	: Identification number of fridge showcase [-]		

Option 2

$$RE_{p} = \sum_{i} \sum_{j} \left[EC_{pj,i,j,p} \times \frac{COP_{pj,i,j}}{COP_{ref,i,j}} \times \frac{1}{1 - C_{D}(1 - PLR_{i,j,p})} \right] \times EF_{elec}$$

 $PLR_{i,j,p} = \min(\frac{EC_{pj,i,j,p} \times 10^3}{t_{pj,i,j,p}} \times \frac{COP_{pj,i,j}}{Cap_{pj,i,j}}, 1)$

Where,

RE_p	: Reference emissions of fridge showcase during the period p [tCO ₂ /p]
$EC_{pj,i,j,p}$: Electricity consumption of the project fridge showcase j at the
	convenience store <i>i</i> during the period <i>p</i> [MWh/p]
EF _{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
$COP_{pj,i,j}$: COP of the project fridge showcase j at the convenience store i [-]
$COP_{ref,i,j}$: COP of the reference fridge showcase j at the convenience store i [-]
C_D	: Degradation Coefficient [-]
$PLR_{i,j,p}$: Part Load ratio of the project fridge showcase <i>j</i> at the convenience store
	<i>i</i> during the period <i>p</i> [-]
$t_{pj,i,j,p}$: Operating time of the project fridge showcase <i>j</i> at the convenience store
	<i>i</i> during the period <i>p</i> [hour]
$Cap_{pj,i,j}$: Capacity of the project fridge showcase <i>j</i> at the convenience store <i>i</i> [kW]
i	: Identification number of the convenience store [-]

: Identification number of fridge showcase [-]

G. Calculation of project emissions

j

	$PE_{p} = \sum_{j} \sum_{i} \left[EC_{pj,i,j,p} \right] \times EF_{elec}$
PE_p	: Project emissions of the project fridge showcase during the period p
	$[tCO_2/p]$
$EC_{pj,i,j,p}$: Electricity consumption of the project fridge showcase j at the
	convenience store i during the period p [MWh/p]
EF _{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	: Identification number of the convenience store [-]
j	: Identification number of the project fridge showcase [-]

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$	
ER_p	: Emissions reductions during the period p [tCO ₂ /p]	
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
PE_p	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of Data	Source		
	CO ₂ emission factor for consumed electricity.	[Grid electricity]		
	When project fridge showcase consumes only grid			
	electricity or captive electricity, the project	available at the time of		
	participant applies the CO ₂ emission factor	validation is applied		
EF_{elec}	respectively.	and fixed for the		
		monitoring period		
When project fridge showcase may consum		thereafter. The data is		
	grid electricity and captive electricity, the project	sourced from "Grid		
	participant applies the CO ₂ emission factor with	Emission Factor		

	1 1	
1	lower value.	(GEF) of Thailand",
		endorsed by Thailand
	[CO ₂ emission factor]	Greenhouse Gas
	For grid electricity: The most recent value available	Management
	from the source stated in this table at the time of	Organization unless
	validation.	otherwise instructed
		by the Joint
	For captive electricity, it is determined based on the	Committee.
1	following options:	
		[Captive electricity]
á	a) Calculated from its power generation efficiency	For the option a)
($(\eta_{elec}$ [%]) obtained from manufacturer's	Specification of the
5	specification	captive power
r	The power generation efficiency based on lower	generation system
1	heating value (LHV) of the captive power generation	provided by the
5	system from the manufacturer's specification is	manufacturer (η_{elec})
á	applied;	[%]).
		CO ₂ emission factor of
	$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	the fossil fuel type
		used in the captive
1	b) Calculated from measured data	power generation
r	The power generation efficiency calculated from	system (<i>EF_{fuel}</i>
1	monitored data of the amount of fuel input for power	[tCO ₂ /GJ])
Į	generation (FC_{PLD}) and the amount of electricity	
Į	generated $(EG_{PI,p})$ during the monitoring period p is	For the option b)
	applied. The measurement is conducted with the	Generated and
	monitoring equipment to which calibration	
	certificate is issued by an entity accredited under	the captive power
	national/international standards;	generation system
		$(EG_{PJ,p} [MWh/p]).$
	$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$	Fuel amount
	Where:	consumed by the
i	NCV _{fuel} : Net calorific value of consumed fuel	captive power
	[GJ/mass or volume]	generation system
		$(FC_{PJ,p}$ [mass or
1	Note:	volume/p]).
]	In case the captive electricity generation system	Net calorific value

1				
	meets all of the foll	lowing condi	tions, the value in	the (NCV _{fuel} [GJ/mass or
	following table	may be a	applied to EF	elec volume]) and CO ₂
	depending on the c	consumed fue	el type.	emission factor of the
				fuel (<i>EF</i> _{fuel} [tCO ₂ /GJ])
	• The system is	non-renewab	ole generation syst	in order of preference:
	• Electricity get	neration capa	city of the system	n is 1) values provided by
	less than or ec	ual to 15 M	W	the fuel supplier;
				2) measurement by the
	Fuel type	Diesel	Natural gas	project participants;
		fuel	- ···· 8···	3) regional or national
	EF _{elec}	0.8 *1	0.46 *2	default values;
			·	4) IPCC default values
	*1 The most recen	t value at the	time of validation	n is provided in tables 1.2
	applied.			and 1.4 of Ch.1 Vol.2
	*2 The value is ca	lculated with	n the equation in	the of 2006 IPCC
	option a) above. Th	ne lower valu	e of default effect	ive Guidelines on
	CO ₂ emission fa	octor for na	atural gas (0.05	543 National GHG
	tCO ₂ /GJ), and the		-	
	efficiency for off-g	rid gas turbi	ne systems (42%)	are value is applied.
	applied.	, C	•	11
				[Captive electricity
				with diesel fuel]
				CDM approved small
				scale methodology:
				AMS-I.A.
				[Captive electricity
				with natural gas]
				2006 IPCC Guidelines
				on National GHG
				Inventories for the
				source of EF of natural
				gas.
				CDM Methodological
				tool "Determining the
				baseline efficiency of
				thermal or electric

			energy generation
			systems version02.0"
			for the default
			efficiency for off-grid
			power plants.
	COP of the project fridge	0	The specifications of
	convenience store <i>i</i> at the standard temperature*		the project fridge
			showcase and
$COP_{pj,i,j}$	*The standard temperature	conditions are as	condensing unit for
	follows:		quotation or the
	Ambient temperature: 32 degr	ees Celsius	factory acceptance test
	Evaporative temperature: -10	degrees Celsius	data by manufacturer.
	COP of the reference fridge sh	howcase j at the	Nominal value
	convenience store <i>i</i> is selected	from the default	available on product
	COP values in the following ta	able.	catalogs, specification
			documents or
	Table: COP for Reference	e fridge showcase	websites, hearing
	(COP _{ref,i,j})	survey.
	Cooling capacity [kW]	Reference COP	The default value is
	$3.0 \le x \le 15.0$	2.20	derived from the COP
	$15.0 < x \le 25.0$	1.83	of constant speed type
			fridge showcase which
$COP_{ref,i,j}$			is manufactured by
			same manufacturer of
			project inverter-
			controlled fridge
			showcase.
			The <i>COP</i> _{ref,i,j} should be
			revised if necessary
			from survey result
			which is conducted by
			the JC or project
			participants.
	Capacity of the project fridg	ge showcase <i>i</i> at the	Nominal value
$Cap_{pj,i,j}$	convenience store i at the	-	available on product
	condition.	1	catalogs, specification
		(kW) prepared by	
	or expanding	rparter of	

	manufacturer is applied.	websites.	
	*The standard tempera follows: Ambient temperature: 32 Evaporative temperature:	degrees Celsius	15
	Degradation Coefficient, as indicated in the Table		The default value is
	below.		derived from the
C			survey on the values of
C _D	Parameter	Value	Degradation
	CD	0.15	Coefficient of air