JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand	
Name of the methodology proponents	Tepia Corporation Japan. CO., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introduction of High	
version number	Efficiency Screw Chiller for freezing and	
	refrigeration, Ver.01.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
Date of completion	26/12/2019	

History of the proposed methodology

Version	Date	Contents revised		
Ver.01.0	26/12/2019	First edition		

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Screw Chiller for freezing and refrigeration, Ver.01.0

B. Terms and definitions

Terms	Definitions			
Screw chiller	Screw chiller is a cooling and refrigeration machine			
	utilizing a vapor compression refrigeration cycle equipped			
	with screw type compressor, a condenser, an expansion			
	valve and an evaporator in one unit.			
	Assembly of compressor, condenser, expansion valve and			
	evaporator with interconnections, is defined as one			
	module. As for products of screw chiller, there are the type			
	of single module and multiple modules in one unit.			
	This methodology is applicable to a unit of multiple			
	modules as well as the one of single module.			
Cooling capacity	Cooling capacity is the capability of individual chiller to			
	remove heat. In this methodology, "cooling capacity" is			
	used to represent a cooling capacity per one individual			
	chiller unit and not to represent package units which			
	consist of multiple screw chillers.			
Periodical check	Periodical check is a periodical investigation of screw			
	chiller(s) done by manufacturer or agent who is authorized			
	by the manufacturer, in order to maintain screw chiller(s)			
	performance.			

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving	
measures energy by introducing high efficiency chiller(s).		
Calculation of reference Reference emissions are GHG emissions from the usage		

emissions	reference chiller unit, calculated by using data of power			
	consumption of project screw chiller(s), ratio of COPs of			
	reference/project screw chiller and CO ₂ emission factor for			
	consumed electricity.			
Calculation of project	Project emissions are GHG emissions from the usage of screw			
emissions	chiller(s), calculated with power consumption of screw			
	chiller(s) and CO ₂ emission factor for consumed electricity.			
Monitoring parameters	Power consumption of project screw chiller			
	Amount of fuel consumed and amount of electricity			
	generated by captive power, where applicable.			

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs brine screw chiller(s) for freezing and refrigeration.				
	Cooling capacity of a screw chiller per one module is less than or equals to				
	1,000 kW.				
Criteria 2	COP for project screw chiller(s) calculated under the standardizing				
	temperature conditions ($COP_{PJ,tc,i}$) is more than COP of the reference screw				
	chiller, with the cooling capacity range same as the project screw chiller.				
	[equation to calculate COP _{PJ,tc,i}]				
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(TC_{cooling-out,i} - TC_{chilled-out,i} + TD_{chilled}]$				
	$+ TD_{cooling}) \div (37 - 7 + TD_{chilled} + TD_{cooling})]$				
	${ m COP_{PJ,tc,i}}$: COP of project screw chiller i calculated under the				
	standardizing temperature conditions* [-]				
	$COP_{PJ,i}$: COP of project screw chiller i under the catalog				
	conditions of the project screw chiller [-]				
	TC _{cooling-out,i} : Output cooling water temperature of project screw				
	chiller i set under the catalog conditions of the				
	project screw chiller [degree Celsius]				
	TC _{chilled-out,i} : Output chilled water temperature of project screw				
	chiller i set under the catalog conditions of the				
	project screw chiller [degree Celsius]				
	TD _{cooling} : Temperature difference between condensing				
	temperature of refrigerant and output cooling water				
	temperature, 1.5 degree Celsius set as a default				

	value			
	[degree Celsius]			
	TD _{chilled} : Temperature difference between evaporating			
	temperature of refrigerant and output chilled water			
	temperature, 1.5 degree Celsius set as a default			
	value [degree Celsius]			
	The standardizing temperature conditions at which COP for project screw			
	chiller(s) calculated in this methodology are shown below:			
	Chilled water : output 7 degrees Celsius			
	input 12 degrees Celsius			
	Cooling water : output 37 degrees Celsius			
	input 32 degrees Celsius			
Criterion 3	Ozone Depletion Potential (ODP) of the refrigerant used for screw chiller(s) is			
Cincilon 5	Zero.			
Criterion 4	A plan for prevention of releasing refrigerant used for project screw chiller is			
	prepared. In the case of replacing the existing chiller with the project screw			
	chiller(s), a plan for prevention of releasing refrigerant used in the existing			
	chiller to the air (e.g. re-use of the equipment) is prepared. Execution of this			
	plan is checked at the time of verification, in order to confirm that refrigerant			
	used for the existing one replaced by the project is prevented from being			
	released to the air.			
Criterion 5	Periodical check at least once a year is planned.			

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG type		
Power consumption by reference screw chiller(s) CO ₂		
Project emissions		
Emission sources GHG types		
Power consumption by project screw chiller(s)	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project screw chiller(s), ratio of COPs for reference/project screw chiller, and CO₂ emission factor for consumed electricity.

Two types of cooling systems are identified as possible systems for freezing and refrigeration in Thailand to supply cold water for production process: ice storage system with reciprocation type compressor, and brine/water chiller with screw type compressor.

Considering the efficiency and current implementation situation, this methodology sets the cooling system with screw type compressor as the reference chiller available to brine/water chilling.

This methodology ensures net emission reductions through the following manners:

 Reference COP is set to be the highest COP value (for each of two cooling capacity ranges) among the marketed reference chilling system in Thailand.

F.2. Calculation of reference emissions

 $RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (COP_{PJ,tc,i} \div COP_{RE,i}) \times EF_{elec} \}$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project screw chiller i during the period

p [MWh/p]

 $COP_{PI,tc,i}$: COP of project screw chiller i calculated under the

standardizing temperature conditions [-]

 $COP_{RE.i}$: COP of reference screw chiller i under the standardizing

temperature conditions [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PI,p}$: Power consumption of project screw chiller i during the period

p [MWh/p]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF_{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project chiller consumes only 1) grid	The most recent value
	electricity, 2) captive electricity or 3) electricity	available at the time of
	supplied from other sources such as captive power	validation is applied and
	producer(s) (e.g. independent power producer	fixed for the monitoring
	(IPP), small power producer (SPP) and very small	period thereafter. The data
	power producer (VSPP)), the project participant	is sourced from "Grid
	applies the CO ₂ emission factor respectively.	Emission Factor (GEF) of
		Thailand", endorsed by
	When project screw chiller may consume more	Thailand Greenhouse Gas
	than 2 electric sources, the project participant	Management Organization
	applies the CO ₂ emission factor with the lowest	(TGO) unless otherwise
	value.	instructed by the Joint
		Committee.
	[CO ₂ emission factor]	[Captive electricity]
	For 1) grid electricity	For the option a)
	The most recent value available from the source	Specification of the captive
	stated in this table at the time of validation	power generation system
	For 2) captive electricity including cogeneration	provided by the
	system, it is determined based on the following	manufacturer (η_{elec} [%]).
	options:	CO ₂ emission factor of the

a) Calculated from its power generation efficiency (η_{elec}) obtained from manufacturer's specification.

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{gen} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation $(FC_{PJ,p})$ and the amount of electricity generated $(EG_{PJ,p})$ during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF_{elec}	0.8 *1	0.46 *2

fossil fuel type used in the captive power generation system (EF_{fuel} [tCO₂/GJ])

For the option b) Generated and supplied electricity by the captive power generation system $(EG_{PI,p} \text{ [MWh/p]}).$

Fuel amount consumed by the captive power generation system ($FC_{PJ,p}$ [mass or volume/p]).

Net calorific value (NCV_{fuel} [GJ/mass or volume]) and CO_2 emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference:

in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel]

*1 The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO₂ emission factor for natural gas (0.0543tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.

For 3) electricity supplied from other sources such as captive power producer(s), it is determined based on the following options:

- a) The value provided by the electricity supplier with the evidence;
- b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above:
- c) The value calculated in the same manner instructed for the option b) of 2) captive electricity as instructed above;

When project chiller may consume electricity supplied from more than 2 power producers, the project participant applies the CO₂ emission factors proportionately.

 $COP_{RE.i}$

COP of the reference screw chiller i under the standardizing temperature conditions

The COP of the reference screw chiller i is selected from the default COP values in the following tables in line with cooling capacity of the project screw chiller i. ("x" in the table represents cooling capacity per unit.)

Cooling capacity per unit (kW)	x≤520	520 <x≤1,000< th=""></x≤1,000<>
--------------------------------	-------	---------------------------------

CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.

CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation systems version 02.0" for the default efficiency for off-grid power plants.

[Electricity supplied from other sources such as captive power producer(s)]

For option a) the evidence may include a quotation of emission factor from the electricity supplier(s)

The default COP value is derived from the result of survey on COP of chillers. The survey should prove the of clear use methodology. The $COP_{RE,i}$ be revised should necessary from result which is conducted by JC project or participants.

	$\mathrm{COP}_{\mathrm{RE,i}}$	4.97	5.02		
$COP_{PJ,i}$	COP of the	project screw o	chiller <i>i</i> under t	he catalog	Specifications of project
	conditions of the project screw chiller			screw chiller i prepared for	
					the quotation or factory
				acceptance test data by	
					manufacturer