JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand			
Name of the methodology proponents	Institute for Global Environmental Strategies			
submitting this form	(IGES)			
Sectoral scope(s) to which the Proposed	3. Energy demand			
Methodology applies				
Title of the proposed methodology, and	Energy Saving by Installation of an			
version number	Evaporator with Mechanical Vapor			
	Recompression, Ver01.0			
List of documents to be attached to this form The attached draft JCM-PDD:				
(please check):	Additional information			
Date of completion	26/12/2019			

History of the proposed methodology

Version	Date	Contents revised
01.0	26/12/2019	First edition

A. Title of the methodology

Energy Saving by Installation of an Evaporator with Mechanical Vapor Recompression, Ver.01.0

B. Terms and definitions

Terms	Definitions		
Evaporator	An evaporator is a device used in a process turning liquid		
	form in a solution into its vapor to obtain a solution with		
	high concentration.		
Mechanical vapor	Mechanical vapor recompression is an energy recovery		
recompression (MVR)	method which boosts low pressure suction vapor		
	generated in an evaporator with a mechanically driven		
	compressor and uses it again as a heating source in an		
	evaporator to heat a liquid such as an inlet solution.		
Thermal vapor recompression	Thermal vapor recompression is a process which mixes		
(TVR)	the low-pressure suction vapor generated in an evaporator		
	with a supplied new steam and increases the pressure of		
	the mixed vapor by an ejector to heat a liquid such as an		
	inlet solution.		
Suction ratio	Suction ratio is the indicator of the efficiency for an		
	ejector used in TVR. It is defined as the amount of		
	recovered vapor per the amount of new steam.		

C. Summary of the methodology

Items	Summary		
GHG emission reduction	Waste heat recovery by installing an evaporator with mechanical		
measures	vapor recompression.		
Calculation of reference	Reference emissions are calculated by steam consumption of		
emissions	reference evaporator, heating value of the steam, efficiencies of		
	the project boiler and CO ₂ emission factor of fuel for the boiler.		
Calculation of project	Project emissions are calculated by electricity consumption and		

emissions	steam consumptions by project evaporator and CO ₂ emission		
	factors for electricity and steam consumed.		
Monitoring parameters	Total amount of inlet solution to evaporator		
	• Total amount of evaporation from supplied solution by the		
	project evaporator		
	Project steam consumption by project evaporator		
	Electricity consumption of project evaporator		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The	project	installs	evaporator(s)	which	applies	mechanical	vapor	
	recor	npression							

E. Emission Sources and GHG types

Reference emissions				
Emission sources	GHG types			
Consumption of steam supplied from steam generator by reference	CO ₂			
evaporator				
Project emissions				
Emission sources	GHG types			
Consumption of steam supplied from steam generator by project	CO ₂			
evaporator				
Electricity consumption of project evaporator	CO ₂			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying reference steam consumption, heating value and CO_2 emission factor of fuel for the boiler. The reference steam consumption is determined by the theoretical formula for the steam consumption of reference evaporator which applies thermal vapor recompression. In order to secure net emission reductions in this methodology, the reference emissions are conservatively calculated in the following manners.

-Setting inlet water temperature for the steam generation at 38.5 degree Celsius which is derived from the highest monthly average atmospheric temperature in Thailand

-Setting the suction ratio at 1.2 by taking the highest value within the range of values applied to the existing evaporator in the market

In addition, possible emissions from auxiliary equipment which cools non-recovered vapor in the reference system are not taken into account for calculating the reference emissions.

F.2. Calculation of reference emissions

	$RE_{p} = \frac{\sum SC_{RE,i,p} \times (h_{steam,i} - SPH \times T_{inlet})}{1000} \times \frac{1}{\eta_{PJh}} \times EF_{fuel}$
RE_p	: Reference emissions during the period p [tCO2/p]
$SC_{RE,i,p}$: Reference steam consumption by the reference evaporator i during the period
	<i>p</i> [<i>t</i> / <i>p</i>]
h _{steam,i}	: Specific enthalpy of supplied steam to the project evaporator i $[MJ/t]$
SPH	: Specific heat capacity of water ¹ [MJ/($t \cdot K$)]
Tinlet	: Inlet water temperature for the steam generation [degree celsius]
η_{PJh}	: Efficiency of project boiler for steam supply [-]
EF_{fuel}	: CO_2 emission factor for the fuel consumed by the project boiler for heating
	energy generation [tCO2/GJ]
	$\sum SC_{RE,i,p} = \sum \frac{\left(EV_{tot,i,p} \times LH_{EV,i}\right) - FL_{IN,i,p} \times SPH \times (T_{LS,i} - T_{EV,i})}{LH_{HT,i} \times (SR + 1)}$
$EV_{tot,i,p}$: Total amount of evaporation from supplied solution by the project evaporator
	<i>i during the period p [t/p]</i>
LH _{EV,i}	: Specific latent heat of the evaporation temperature of solution at the project
	evaporator i [MJ/t]
SPH	: Specific heat capacity of water ¹ [MJ/($t \cdot K$)]
$T_{LS,i}$: Temperature of the supplied solution to the project evaporator i [degree
	Celsius]
$T_{EV,i}$: Evaporation temperature of the solution at the project evaporator i [degree
	Celsius]
$LH_{HT,i}$: Specific latent heat of the heating temperature of the supplied vapor to the
	project evaporator i[MJ/t]

SR : Suction ratio of ejector in the reference evaporator with thermal vapor recompression [-]

 $FL_{IN,i,p}$: Total amount of inlet solution to the evaporator *i* during the period p [t/p]

¹ This methodology may apply the specific heat capacity of water instead of specific heat capacities of solution.

G. Calculation of project emissions

$PE_p =$	$= \sum EC_{PJ,i,p} \times EF_{elec} + \frac{\sum SC_{PJ,i,p} \times (h_{steam,i} - SPH \times T_{inlet})}{1000} \times \frac{1}{\eta_{PJh}} \times EF_{fuel}$
PE_p	: Project emissions during the period p [tCO2/p]
$EC_{PJ,i,p}$: Electricity consumption of the project evaporator i during the period p [MWh/p]
EF_{elec}	: CO2 emission factor for consumed electricity [tCO2/MWh]
$SC_{PJ,i,p}$: Project steam consumption by the project evaporator i during the period p
	[t/p]
h _{steam,i}	: Specific enthalpy of supplied steam to the project evaporator i [MJ/t]
SPH	: Specific heat capacity of water [MJ/(t·K)]
Tinlet	:Inlet water temperature for the steam generation [degree celsius]
PJh	: Efficiency of project boiler for steam supply [-]
EF_{fuel}	: CO_2 emission factor for the fuel consumed by the project boiler for heating
	energy generation [tCO ₂ /GJ]

H. Calculation of emissions reductions

Emission reductions are calculated as the difference between the reference emissions and the project emissions, as follows:

$$ER_p = RE_p - PE_p$$

 ER_p : Emission reductions during the period p [tCO_2/p]

- RE_p : Reference emissions during the period p [tCO_2/p]
- PE_p : Project emissions during the period $p [tCO_2/p]$

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity. When project evaporator consumes only 1) grid electricity or, 2) captive electricity, or 3) electricity directly supplied from power plants outside of the project boundary including cogeneration power plant to the project site through its internal grid (e.g. industrial park), the project participant applies the CO ₂ emission factor respectively.	[Grid electricity] The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Grid Emission Factor (GEF) of Thailand",
	When project evaporator may consume both grid electricity and captive electricity more than 2 electric sources, the project participant applies the CO_2 emission factor with the highest value.	endorsed by Thailand Greenhouse Gas Management Organization unless otherwise instructed by the Joint Committee.
	[CO ₂ emission factor] For 1) grid electricity: The most recent value available from the source stated in this table at the time of validation	[Captive electricity] For the option a)
	For 2) captive electricity including cogeneration system, it is determined based on the following options:	Specification of the captive power generation system provided by the manufacturer (η_{elec} [%]).
	a) Calculated from its power generation efficiency (η_{elec} [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive	CO_2 emission factor of the fossil fuel type used in the captive power generation system (EF _{fuel} [tCO ₂ /GJ])
	power generation system from the manufacturer's specification is applied;	For the option b) Generated and

Parameter	De	escription of	data	Source
	EF _{elec} =	$= 3.6 \times \frac{100}{\eta_{ele}}$	$\frac{1}{c} \times EF_{fuel}$	supplied electricity by the captive power generation
	from monitored input for power amount of ele during the mon	neration efficient data of the r generation ectricity gen nitoring peri	d data ciency calculated e amount of fuel $(FC_{PJ,p})$ and the nerated $(EG_{PJ,p})$ od <i>p</i> is applied. ducted with the	system $(EG_{PJ,p})$ [MWh/p]).Fuelamountconsumedby thecaptivepowergenerationsystem(FC_{PJ,p} [mass orvolume /p]).Net calorific value(NCV _{fuel} [GJ/mass
	0 1	sued by an	which calibration entity accredited standards;	or volume]) and CO ₂ emission factor of the fuel (EF _{fuel} [tCO ₂ /GJ])
	$EF_{elec} = FC_{PJ,p}$	$\times \text{NCV}_{\text{fuel}} >$	$ \times \mathrm{EF}_{\mathrm{fuel}} \times \frac{1}{\mathrm{EG}_{\mathrm{PJ},\mathrm{p}}} $	in order of preference:
	$\mathbf{M}\mathbf{C}\mathbf{V}$, $\mathbf{N}_{\mathbf{c}\mathbf{c}\mathbf{c}}$ = 1 = $\mathbf{c}^{\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{c}}$ = $\mathbf{c}^{\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{c}c$			 values provided the fuel supplier; measurement by the project
	Note: In case the capt system meets al the value in the	l of the follo	wing conditions,	participants; 3) regional or national default values; 4) IPCC default values provided in
	applied to EF _{elec} depending on the consumed fuel type.			tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC
	systemElectricity	generation c	wable generation apacity of the qual to 15 MW	Guidelines on National GHG Inventories. Lower value is applied.
	fuel type EF _{elec}	Diesel fuel 0.8 *1	Natural gas	[Captive electricity with diesel fuel] CDM approved
	*1 The most rec	cent value at	the time of	small scale methodology:

Parameter	Parameter Description of data		
	validation is applied.	AMS-I.A.	
	*2 The value is calculated with the equation		
	in the option a) above. The lower value of	[Captive electricity	
	default effective CO ₂ emission factor for	with natural gas]	
	natural gas (0.0543tCO2/GJ), and the most	2006 IPCC	
	efficient value of default efficiency for	Guidelines on	
	off-grid gas turbine systems (42%) are	National GHG	
	applied.	Inventories for the	
		source of EF of	
	For 3) electricity directly supplied from power plants outside of the project boundary including cogeneration power plant, it is determined based on the following options: a) The value provided by the power plants with the evidence; b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above; c) The value calculated in the same manner instructed for the option b) of 2) captive electricity as instructed above;	natural gas. CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation systems version02.0" for the default efficiency for off-grid power plants.	
		[Electricity directly supplied from power plants outside of project boundary]	
		For option a) the evidence may include a quotation of emission factor from the SPP.	
η _{PJh}	Efficiency of the project boiler for steam supply. If multiple boilers are installed, the most efficient value is applied.	Specifications of the project boiler from catalogue or prepared for the quotation.	

Parameter	Description of data	Source
	In case that the efficiency cannot be identified, one of the following default values is applied according to the fuel used for the boiler. Natural gas: 0.92 Oil: 0.9	[Default value] CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation systems version02.0" for the default efficiency of project boiler. The default values should be updated along with the revision of the CDM tool.
EF _{fuel}	CO ₂ emission factor for the fuel consumed by the project boiler for heating energy generation [tCO ₂ /GJ] In case that the efficiency cannot be identified, one of the following default values is applied according to the fuel used for the boiler. Natural gas: 0.0543 [tCO ₂ /GJ] Oil: 0.0726 [tCO ₂ /GJ]	In the order of preference: a) values provided by the fuel supplier; b) measurement by the project participants; c) national default values; d) IPCC default values provided in
h _{steam,i}	Specific enthalpy of supplied steam to the project evaporator <i>i</i> [MJ/t] In case that the value applied for this	table 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied. Based on steam table using the values in operating manual or a value

Parameter	Description of data	Source
	parameter has changed, the newly applied	displayed on the
	value and its date of occurrence is recorded	control panel at
	and stored, then start the new monitoring	factory
	period with the new value as fixed <i>ex ante</i> .	
T _{inlet}	Inlet water temperature for the steam	Thai
	generation.	Meteorological
	The highest monthly average atmospheric	Department (2016)
	temperature in Thailand is applied.	"Climatological
	Default value is set to 38.5 [].	Data for the Period
		1981-2010" unless
		otherwise
		instructed by the
		Joint Committee.
LH _{HT,i}	Specific latent heat of the heating	Based on steam
	temperature of the supplied vapor to the	table using the
	project evaporator <i>i</i> [MJ/t]	values in operating
		manual or a value
	In case that this parameter has changed, the	displayed on the
	newly applied value and its date of	control panel at
	occurrence is recorded and stored, then start	factory
	the new monitoring period with the new	
	value as fixed <i>ex ante</i> .	
SR	Suction ratio of ejector in the reference	Value derived
	evaporator with thermal vapor	from the result of
	recompression.	survey. Default
	Default value is set to 1.2 [-].	value, 1.2, should
		be revised if
		necessary.
SPH	Specific heat capacity of water	
	Default value is set to 4.18 $[MJ/(t \cdot K)]$	
$T_{LS,i}$	Temperature of the supplied solution to the	Operating manual
	project evaporator <i>i</i> [degree Celsius]	or a value
		displayed on the
	In case that this parameter has changed, the	control panel at
	newly applied value and its date of	factory
	occurrence is recorded and stored, then start	

Parameter	Description of data	Source
	the new monitoring period with the new	
	value as fixed <i>ex ante</i> .	
$T_{EV,i}$	Evaporation temperature of the solution at	Operating manual
	the project evaporator <i>i</i> [degree Celsius]	or a value
		displayed on the
	In case that this parameter has changed, the	control panel at
	newly applied value and its date of	factory
	occurrence is recorded and stored, then start	
	the new monitoring period with the new	
	value as fixed <i>ex ante</i> .	
$LH_{EV,i}$	Specific latent heat of the evaporation	Based on steam
	temperature of solution at the project	table using the
	evaporator <i>i</i> [MJ/t]	values in operating
		manual or a value
	In case that this parameter has changed, the	displayed on the
	newly applied value and its date of	control panel at
	occurrence is recorded and stored, then start	factory
	the new monitoring period with the new	
	value as fixed <i>ex ante</i> .	