JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Thailand	
Name of the methodology proponents	KANEMATSU CORPORATION	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Installation of Energy-efficient Refrigerators	
version number	Using Natural Refrigerant at Cold Storage,	
	Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
please check):		
Date of completion	10/10/2018	

History of the proposed methodology

Version	Date	Contents revised
01.0	10/10/2018	First edition

A. Title of the methodology

Installation of Energy-efficient Refrigerators Using Natural Refrigerant at Cold Storage, Version 01.0

B. Terms and definitions

Terms	Definitions
Secondary loop cooling system	A secondary loop cooling system is an indirect cooling
	system that cools the object with a secondary refrigerant
	(e.g., brine) which is cooled by a primary refrigerant (e.g.,
	HFC). The secondary loop cooling system primarily consists
	of the refrigerator which is mainly composed of the
	compressor and heat exchangers as the primary refrigeration
	cycle and pumps, heat exchangers and fans as the secondary
	refrigeration cycle.
	The secondary loop cooling system is described as "primary
	refrigerant/secondary refrigerant" (e.g., "HFC/brine").
Coefficient of Performance	COP is defined as a value calculated by dividing refrigeration
(COP)	capacity by electricity consumption of a refrigerator under a
	full load condition. Electricity consumption of a refrigerator
	is defined in this methodology as the electricity used to
	operate the compressor. Electricity consumption of pumps for
	circulating the secondary refrigerant, and other ancillary
	equipment are not included in the COP calculation.
	The room temperature conditions at which COPs are
	calculated in this methodology are shown below:
	• Room temperature condition: - 25 deg. C, 0 deg. C, 5
	deg. C
	• Cooling water fed to condenser: inlet 32 deg. C
Natural refrigerant	Natural refrigerant refers to naturally occurring substances
	with refrigeration capacity and with zero ozone depletion
	potential (ODP) (e.g. CO ₂ and NH ₃).
Periodical check	Periodical check is a periodical maintenance operation done

by the manufacturer or an agent who is authorized by the
manufacturer to maintain refrigerator performance (not
including part replacement or overhaul).

C. Summary of the methodology

Items	Summary		
GHG emission reduction	Energy-efficient refrigerators using natural refrigerant is		
measures	introduced for energy saving at the cold storage.		
Calculation of reference	Reference emissions are GHG emissions from reference		
emissions	refrigerators, calculated by using data of power consumption of		
	project refrigerator, ratio of COPs of reference/project		
	refrigerators and CO ₂ emission factor for consumed electricity.		
Calculation of project	Project emissions are GHG emissions from project refrigerator,		
emissions	calculated with power consumption of project refrigerator and		
	CO ₂ emission factor for consumed electricity.		
Monitoring parameters	Power consumption of project refrigerator		

D. Eligibility criteria				
This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	Refrigerator(s) with a secondary loop cooling system using CO ₂ as a refrigerant			ant
	and equipped with inverter is installed at cold storage.			
Criterion 2	COP of project refrigerator(s) installed in the project cooling system is more than			than
	the threshold COP values set in the tables below. ("x" in the table represents			
	cooling capacity per unit.)			
	Room temperature	Cooling capacity	Threshold COP	
	condition	(kW)	value	
	- 25 deg. C	$42.4 \le x \le 340.0$	1.71	
	0 deg. C	$73.6 \le x \le 516.4$	2.79	
	5 deg. C	$86.2 \le x \le 612.6$	3.20	
	COP for the project refrigerator(s) are calculated with the following conditions:			
	• Room temperature condition: - 25 deg. C or 0 deg. C or 5 deg. C			
	Cooling water fed to condenser: inlet 32 deg. C			

Criterion 3	Periodical check is planned at least one (1) time annually.	
Criterion 4	In the case of replacing the existing refrigerator with the project refrigerator, a	
	plan for prevention of releasing refrigerant used in the existing refrigerator to the	
	air (e.g. re-use of the equipment) is prepared. Execution of this plan is checked at	
	the time of verification, in order to confirm that refrigerant used for the existing	
	one replaced by the project is prevented from being released to the air.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by the reference refrigerator	CO_2	
Project emissions		
Emission sources	GHG types	
Power consumption by the project refrigerator	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying the power consumption of project refrigerator, ratio of COPs for reference/project refrigerators and CO₂ emission factor for consumed electricity.

The following types of cooling system are identified as possible cooling systems other than the project system to be installed at cold storage:

• For room temperature condition of -25 deg. C: HFC dry expansion (single loop), NH₃ flooded, pump system (single loop), HFC/brine (secondary loop) and NH₃/brine (secondary loop)

• For room temperature condition of 0 deg. C and 5 deg. C: HFC dry expansion (single loop) This methodology ensures that net emission reductions are achieved by applying the following conservative assumptions:

• Determination of default values for COP_{RE} :

The maximum COP values of refrigerators among the data of possible type cooling systems

available in Thai market within the range specified by Criterion 2 is defined as the default values of COP_{RE} (1.71 for temperature condition of - 25 deg. C, 2.79 for temperature condition of 0 deg. C and 3.20 for 5 deg. C) to ensure the net emission reductions.

• Emissions associated with leakage of refrigerant in operation:

Among the possible types of cooling systems, two cooling systems use HFCs (R404A, GWP: 3,000-4,000) as refrigerant. The project cooling system uses a natural refrigerant that has a very small GWP (CO₂: 1, NH₃: less than 1). However, emissions associated with leakage of refrigerant are not counted in the emission reduction calculation.

• Project refrigerator equipped with inverter:

The project refrigerator is controlled by inverter technology. In this methodology, COP is defined under the condition of full load although in reality a cold storage is often operated under the condition of partial load where the efficiency of the refrigerator without inverter tends to decrease because of its intermittent operation. Calculating emissions based on the COPs of full load conditions is deemed conservative since the efficiency of the project refrigerator is likely to be maintained either at the full load or at partial load condition as it is equipped with inverter.

F.2. Calculation of reference emissions

	$RE_{p} = \sum_{i} \left(EC_{PJ,i,p} \times \frac{COP_{PJ,i}}{COP_{RE,i}} \times EF_{elec} \right)$
Where	
RE_p	Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	Power consumption of project refrigerator i during the period p [MWh/p]
$COP_{PJ,i}$	COP of project refrigerator <i>i</i>
$COP_{RE,i}$	COP of reference refrigerator <i>i</i>
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	Identification number of refrigerators

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

Where	
PE_p	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	Power consumption of project refrigerator i during the period p [MWh/p]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	Identification number of refrigerators

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$
Where	
ER_p	Emission reductions during the period p [tCO ₂ /p]
RE_p	Reference emissions during the period p [tCO ₂ /p]
PE_p	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
COP _{PJ,i}	COP of project refrigerator <i>i</i>	Specifications of project
		refrigerator <i>i</i> prepared for the
	The room temperature conditions at which	quotation or factory acceptance
	COPs are calculated in this methodology are	test data at the time of shipment
	shown below:	by manufacturer.
	• Room temperature condition: - 25 deg. C,	
	0 deg. C, 5 deg. C	
	• Cooling water fed to condenser: inlet 32	
	deg. C	
$COP_{RE,i}$	COP of reference refrigerator <i>i</i>	The default COP values are
		derived from the maximum
	The default values for $COP_{RE,i}$ is applied	value of COP among the
	depending on the room temperature condition	available data of the possible

	set for the project refrigerator <i>i</i> :			types of refrigerators except
	Temperature	Cooling	Default	project within the range
	condition	capacity	values	specified by Criterion 2.
	- 25 deg. C	$42.4 \leq x \leq$	1.71	The survey should prove the
		340.0kW		use of clear methodology.
	0 deg. C	73.6 ≤ x ≤	2.79	Default values of COP _{RE,i}
		516.4kW		should be revised if necessary
	5 deg. C	$86.2 \leq \mathbf{x} \leq$	3.20	from survey result which is
	C	612.6kW		conducted by JC or project
	* "x" in the table represents cooling capacity			participants.
	per unit.	1		
	I · · · ·			
EFelec	CO ₂ emission factor for consumed electricity			[Grid electricity]
			2	The most recent value available
	 When project refrigerator consumes only grid electricity or captive electricity, the project participant applies the CO₂ emission factor respectively. When project refrigerator may consume both grid electricity and captive electricity, the project participant applies the CO₂ emission 			at the time of validation is
				applied and fixed for the
				monitoring period thereafter.
				The data is sourced from "Grid
				Emission Factor (GEF) of
				Thailand", endorsed by
				Thailand Greenhouse Gas
				Management Organization
	factor with lower value.			unless otherwise instructed by
				the Joint Committee.
	[CO ₂ emission factor] For grid electricity: The most recent value available from the source stated in this table at the time of validation			
				[Captive electricity]
				For the option a)
				Specification of the captive
				power generation system
	For captive elec	tricity, it is dete	ermined based	provided by the manufacturer
	on the following	g options:		$(\eta_{elec} [\%]).$
				CO ₂ emission factor of the
	a) Calculated fr	om its power ge	eneration	fossil fuel type used in the
	efficiency (η_{elec}	[%]) obtained f	rom	captive power generation
	manufacturer's specification The power generation efficiency based on			system (EF_{fuel} [tCO ₂ /GJ])
	lower heating v	alue (LHV) of t	he captive	For the option b)

power generation system from the	Generated and supplied
manufacturer's specification is applied;	electricity by the captive power
$EE = 3.6 \times \frac{100}{5.6} \times EE$	generation system $(EG_{PJ,p})$
$Er_{elec} = 3.0 \times \frac{\eta_{elec}}{\eta_{elec}} \times Er_{fuel}$	[MWh/p]).
	Fuel amount consumed by the
b) Calculated from measured data	captive power generation
The power generation efficiency calculated	system $(FC_{PJ,p}$ [mass or
from monitored data of the amount of fuel	volume/p]).
input for power generation $(FC_{PJ,p})$ and the	Net calorific value (NCV _{fuel}
amount of electricity generated $(EG_{PJ,p})$	[GJ/mass or volume]) and CO ₂
during the monitoring period p is applied. The	emission factor of the fuel
measurement is conducted with the monitoring	(EF _{fuel} [tCO ₂ /GJ]) in order of
equipment to which calibration certificate is	preference:
issued by an entity accredited under	1) values provided by the fuel
national/international standards;	supplier;
	2) measurement by the project
$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$	participants;
Where:	3) regional or national default
NCV _{fuel} : Net calorific value of consumed	values;
fuel [GJ/mass or volume]	4) IPCC default values
	provided in tables 1.2 and 1.4
Note:	of Ch.1 Vol.2 of 2006 IPCC
In case the captive electricity generation	Guidelines on National GHG
system meets all of the following conditions,	Inventories. Lower value is
the value in the following table may be	applied.
applied to EF_{elec} depending on the consumed	
fuel type.	[Captive electricity with diesel
	fuel]
• The system is non-renewable generation	CDM approved small scale
system	methodology: AMS-I.A.
• Electricity generation capacity of the	
system is less than or equal to 15 MW	[Captive electricity with natural
	gas]
fuel type Diesel Natural gas	2006 IPCC Guidelines on
fuel fuel	National GHG Inventories for
EF_{elec} 0.8 *1 0.46 *2	the source of EF of natural gas.
·	CDM Methodological tool

*1 The most recent value at the time of	"Determining the baseline
validation is applied.	efficiency of thermal or electric
*2 The value is calculated with the equation in	energy generation systems
the option a) above. The lower value of default	version 02.0" for the default
effective CO2 emission factor for natural gas	efficiency for off-grid power
(0.0543tCO ₂ /GJ), and the most efficient value	plants.
of default efficiency for off-grid gas turbine	
systems (42%) are applied.	