Joint Crediting Mechanism Approved Methodology TH_AM006 "Installation of Displacement Ventilation Air Conditioning Unit in the Cleanroom of Semiconductor Manufacturing Factory"

A. Title of the methodology

Installation of Displacement Ventilation Air Conditioning Unit in the Cleanroom of Semiconductor Manufacturing Factory, Version 01.0

B. Terms and definitions

Terms	Definitions
Displacement ventilation	Air distribution technology that introduces conditioned air
	into a zone at a low velocity (less than 1.0 m/s) via diffusers
	located either at near floor level or middle space of a room
	and spreads the supply air over the floor to displace the
	warmer air from the occupied zone toward the ceiling for
	ventilation.
Displacement ventilation air	A supplying unit of conditioned air with application of
conditioning unit	displacement ventilation technology. The unit doesn't include
	outdoor-air processing units.
Mixing ventilation	A traditional air distribution technology that uses turbulent or
	laminar flow of fresh air supplied from the ceiling level so
	that mix and dilute any existing warmer air with supplied
	clean and conditioned air.
Mixing ventilation air	A supplying unit of conditioned air with application of
conditioning unit	mixing ventilation technology.
Airborne particulate cleanliness	The level of cleanliness specified by the maximum allowable
class	number of particles per cubic meter of air (per cubic foot of
	air).
Outdoor-air processing unit	The unit for processing the outdoor fresh air that is taken in
	for ventilation and/or for keeping the pressure inside a clean
	room a predetermined positive value. The unit also
	constituted of air filters and heating or cooling coils so that
	the outside air is brought to a required state of temperature,

		humidity, and cleanliness before letting the outside air in.
--	--	--

C. Summary of the methodology

Items	Summary			
GHG emission reduction	Installation of displacement ventilation air conditioning unit to			
measures	improve energy efficiency of supplying conditioned air to the			
	cleanroom of semiconductor plant leads to reduction of power			
	consumption for ventilation.			
Calculation of reference	Reference emissions are calculated by multiplying power			
emissions	consumption of mixing ventilation air conditioning unit, the			
	proportion of motive power of reference mixing ventilation air			
	conditioning unit and project displacement ventilation air			
	conditioning unit, and CO_2 emission factor for electricity			
	consumed.			
Calculation of project	Project emissions are calculated by multiplying total power			
emissions	consumption of displacement ventilation air conditioning unit			
	and CO ₂ emission factor for electricity consumed.			
Monitoring parameters	• The amount of power consumption by project displacement			
	ventilation air conditioning unit			
	• The amount of fuel consumption and the amount of			
	electricity generated by captive power, where applicable			

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Displacement ventilation air conditioning unit, whose specification of velocity of		
	the discharged air is designed to be more than 0.5 m/s and equals to or less than		
	1.0 m/s, is installed in the cleanroom of semiconductor plant.		
Criterion 2	The project displacement ventilation air conditioning unit is constituted of at		
	least cooling coil, HEPA (high efficiency particular air) or ULPA (ultra low		
	penetration air) filter and air supply fan in one unit.		
Criterion 3	The project displacement ventilation air conditioning unit is designed to meet the		

	threshold values of Class 6 or class 7 of airborne particulate cleanliness class set		
	by ISO 14644-1:2015 ¹ .		
Criterion 4	The project displacement ventilation air conditioning unit only supplies cooled		
	air.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Power consumption by mixing ventilation air conditioning unit	CO ₂		
Power consumption by reference outdoor-air processing unit (excluded	CO ₂		
from calculation of reference emissions)			
Power consumption by reference chiller (excluded from calculation of	CO ₂		
reference emissions)			
Power consumption by reference exhaust fan (excluded from calculation	CO ₂		
of reference emissions)			
Project emissions			
Project emissions			
Project emissions Emission sources	GHG types		
Project emissions Emission sources Power consumption by displacement ventilation air conditioning unit	GHG types CO ₂		
Project emissions Emission sources Power consumption by displacement ventilation air conditioning unit Power consumption by project outdoor-air processing unit (excluded	GHG types CO ₂ CO ₂		
Project emissions Emission sources Power consumption by displacement ventilation air conditioning unit Power consumption by project outdoor-air processing unit (excluded from calculation of project emissions)	GHG types CO ₂ CO ₂		
Project emissions Emission sources Power consumption by displacement ventilation air conditioning unit Power consumption by project outdoor-air processing unit (excluded from calculation of project emissions) Power consumption by project chiller (excluded from calculation of	GHG types CO ₂ CO ₂ CO ₂		
Project emissions Emission sources Power consumption by displacement ventilation air conditioning unit Power consumption by project outdoor-air processing unit (excluded from calculation of project emissions) Power consumption by project chiller (excluded from calculation of project emissions)	GHG types CO ₂ CO ₂ CO ₂		
Project emissions Emission sources Power consumption by displacement ventilation air conditioning unit Power consumption by project outdoor-air processing unit (excluded from calculation of project emissions) Power consumption by project chiller (excluded from calculation of project emissions) Power consumption by project exhaust fan (excluded from calculation	$\begin{array}{c} \hline GHG types \\ CO_2 \\ CO_2 \\ \hline CO_2 \\ \hline CO_2 \\ \hline CO_2 \\ \hline CO_2 \end{array}$		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are consisted of emissions from mixing ventilation air conditioning unit, outdoor-air processing unit and chillers supplying chilled water to cooling coil. The temperature of outlet chilled water of the chiller is set higher (e.g. 14 degrees Celsius) with

¹ Cleanrooms and associated controlled environments -- Part 1: Classification of air cleanliness by particle concentration

displacement ventilation air conditioning unit compared to that with mixing ventilation air conditioning unit (e.g. 7 degrees Celsius). It is because displacement ventilation air conditioning unit diffuses conditioned air at floor level or middle space of a room while mixing ventilation air conditioning unit does from air supply ports located on the ceiling. Therefore, the heat load handled by the chillers in the case of displacement ventilation gets lower, and it leads to reduction of power consumption by the chillers.

In this methodology, GHG emissions reductions of chillers caused by the difference of heat load are not included in the calculation of total GHG emission reductions to ensure the net emission reductions.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \sum_{j} \sum_{k} \left(EC_{PJ,DV,i,j,k,p} \times \frac{L_{RE,j,k}}{L_{PJ,j,k}} \times EF_{elec,k} \right)$$

with

$$L_{RE,j,k} = \frac{P_{d,RE,j,k} \times AFR_{RE,j,k}}{1,000 \times \eta_{RE,j,k}}$$
$$L_{PJ,j,k} = \frac{P_{d,PJ,j,k} \times AFR_{PJ,j,k}}{1,000 \times \eta_{PJ,j,k}}$$
$$AFR_{RE,j,k} = \frac{V_{cr,j,k} \times T_{vent,j,k}}{3,600}$$
$$AFR_{PJ,j,k} = \sum_{i} AFR_{PJ,i,j,k}$$
$$\eta_{RE,j,k} = \eta_{PJ,j,k}$$

* Since the fans with similar type and specification are installed both in displacement ventilation air conditioning unit and mixing ventilation air conditioning unit, energy efficiency of the fans are considered to be equal.

Therefore

$$RE_{p} = \sum_{i} \sum_{j} \sum_{k} \left(EC_{PJ,DV,i,j,k,p} \times \frac{L_{RE,j,k}}{L_{PJ,j,k}} \times EF_{elec,k} \right)$$
$$= \sum_{i} \sum_{j} \sum_{k} \left(EC_{PJ,DV,i,j,k,p} \times \frac{P_{d,RE,j,k} \times AFR_{RE,j,k}}{P_{d,PJ,j,k} \times AFR_{PJ,j,k}} \times EF_{elec,k} \right)$$

Where

REp	Reference emissions during the period p [tCO ₂ /p]			
$EC_{PJ,DV,i,j,k,p}$	The amount of power consumption by the project displacement ventilation air			
	conditioning unit i in cleanroom j of the project factory k during the period p			
	[MWh/p]			
$L_{RE,j,k}$	Motive power of reference mixing ventilation air conditioning unit(s)			
	supplying air to cleanroom j in the project factory k [kW]			
$L_{PJ,j,k}$	Motive power of project displacement ventilation air conditioning unit(s)			
	supplying air to cleanroom j in the project factory k [kW]			
$EF_{elec,k}$	CO_2 emission factor for consumed electricity in the project factory k			
	[tCO ₂ /MWh]			
$P_{d,RE,j,k}$	Discharge pressure of reference mixing ventilation air conditioning unit(s)			
	supplying air to cleanroom j in the project factory k [Pa]			
$P_{d,PJ,j,k}$	Discharge pressure of project displacement ventilation air conditioning			
	unit(s) supplying air to cleanroom j in the project factory k [Pa]			
$AFR_{RE,j,k}$	Airflow rate of reference mixing ventilation air conditioning unit(s)			
	supplying air to cleanroom j in the project factory k $[m^3/s]$			
$AFR_{PJ,j,k}$	Airflow rate of project displacement ventilation air conditioning unit(s)			
	supplying air to cleanroom j in the project factory k $[m^3/s]$			
$\eta_{RE,j,k}$	Fan efficiency of reference mixing ventilation air conditioning unit(s)			
	supplying air to cleanroom j in the project factory k [-]			
$\eta_{PJ,j,k}$	Fan efficiency of project displacement ventilation air conditioning unit(s)			
	supplying air to cleanroom j in the project factory k [-]			
$V_{cr,j,k}$	Volume of the cleanroom j in the project factory k $[m^3]$			
T _{vent,j,k}	Number of times of ventilation required for the cleanroom j in the project			
	factory k [times/h]			
$AFR_{PJ,i,j,k}$	Airflow rate of project displacement ventilation air conditioning unit i			
	supplying air to cleanroom j in the project factory k $[m^3/s]$			
i	Identification number of the displacement ventilation air conditioning unit			
j	Identification number of the cleanroom			
k	Identification number of the factory			

Emissions from power consumption by reference outdoor-air processing unit(s) and project outdoor-air processing unit(s) are considered to be equal. Emissions from power consumption by reference exhaust fan(s) and project exhaust fan(s) are also considered to be equal. Therefore, both of them are not included in calculation of reference emissions and project emissions.

Emissions from power consumption by reference chiller(s) are not included in calculation of

reference emissions as explained in F.1 of this methodology.

G. Calculation of project emissions

$$PE_{p} = \sum_{i} \sum_{j} \sum_{k} (EC_{PJ,DV,i,j,k,p} \times EF_{elec,k})$$

Where

PE_p	Project emissions during the period p [tCO ₂ /p]				
$EC_{PJ,DV,i,j,k,p}$	The amount of power consumption by the displacement ventilation air				
	conditioning unit <i>i</i> in clean room <i>j</i> of the project factory <i>k</i> during the period p				
	[MWh/p]				
$EF_{elec,k}$	CO_2 emission factor for consumed electricity in the project factory k				
	[tCO ₂ /MWh]				
i	Identification number of the displacement ventilation air conditioning unit				
j	Identification number of the cleanroom				
k	Identification number of the factory				

Emissions from power consumption by reference outdoor-air processing unit(s) and project outdoor-air processing unit(s) are considered to be equal. Emissions from power consumption by reference exhaust fan(s) and project exhaust fan(s) are also considered to be equal. Therefore, both of them are not included in calculation of reference emissions and project emissions.

Emissions from power consumption by project chiller(s) are not included in calculation of project emissions as explained in F.1 of this methodology.

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$
Where	
ER_p	Emission reductions during the period p [tCO ₂ /p]
RE_p	Reference emissions during the period p [tCO ₂ /p]

 PE_p

Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$AFR_{RE,j,k}$	Airflow rate of reference mixing ventilation	Calculated
	air conditioning unit(s) supplying air to	
	cleanroom j in the project factory k	
	Calculated with the following equation:	
	$AFR_{RE,j,k} = \frac{V_{cr,j,k} \times T_{vent,j,k}}{3,600}$	
$AFR_{PJ,j,k}$	Airflow rate of project displacement	Design document or
	ventilation air conditioning unit(s) supplying	specification document of the
	air to cleanroom j in the project factory k	displacement ventilation air
		conditioning unit.
	One value is determined <i>ex ante</i> for each	
	project cleanroom. Where outdoor-air	
	processing units are supplying air to one	
	cleanroom, the total value is applied.	
$P_{d,RE,j,k}$	Discharge pressure of reference mixing	Hearing survey with
	ventilation air conditioning unit(s) supplying	manufacturer of mixing
	air to cleanroom j in the project factory k [Pa]	ventilation air conditioning
		unit.
	The default value of [1,200] is applied.	
$P_{d,PJ,j,k}$	Discharge pressure of project displacement	Design document or
	ventilation air conditioning unit(s) supplying	specification document of the
	air to cleanroom j in the project factory k	displacement ventilation air
		conditioning unit.
	One value is determined <i>ex ante</i> for each	
	project cleanroom.	
$V_{cr,j,k}$	Volume of the cleanroom <i>j</i> in the project	Design document of the
	factory k	cleanroom.

	The value is dete	rmined by the act		
	of the cleanroom where the project in			
	implemented.			
T _{vent,j,k}	Number of times	of ventilation rec	quired for	Published documents on the
	the cleanroom j in	n the project facto	ory k	web.
	The default value	e from the followi	ing table is	
	applied correspon	nding to the airbo	orne	
	particulate cleanl	iness class requir	red for the	
	cleanroom j.			
	cleanlin	ess class		
	ISO	FED-	T _{vent,j,k}	
	14644-1:2015	STD-209E		
	Class 6	1,000	80	
	Class 7	10,000	40	
EF _{elec,k}	CO ₂ emission fac	ctor for consumed	l electricity.	[Grid electricity]
	When project of	chiller consume	s only grid	The most recent value available
	electricity or ca	ptive electricity,	the project	at the time of validation is
	participant appli	es the CO ₂ em	ission factor	applied and fixed for the
	respectively.			monitoring period thereafter.
			The data is sourced from "Grid	
	When project ch	iller may consur	Emission Factor (GEF) of	
	electricity and c	aptive electricity	, the project	Thailand", endorsed by
	participant appli	es the CO ₂ em	Thailand Greenhouse Gas	
	with lower value.			Management Organization
			unless otherwise instructed by	
	[CO ₂ emission fa	ctor]	the Joint Committee.	
	For grid electricity: The most recent value available from the source stated in this table at the time of validation			
				[Captive electricity]
				For the option a)
			Specification of the captive	
	For captive electr	ricity, it is determ	power generation system	
	on the following	provided by the manufacturer		
				$(\eta_{elec} [\%]).$

CO₂ emission factor of the a) Calculated from its power generation efficiency (η_{elec} [%]) obtained from fossil fuel type used in the manufacturer's specification captive power generation The power generation efficiency based on system (EF_{fuel} [tCO₂/GJ]) lower heating value (LHV) of the captive power generation system from the For the option b) manufacturer's specification is applied; Generated supplied and $EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$ electricity by the captive power generation system $(EG_{PJ,p})$ [MWh/p]). b) Calculated from measured data Fuel amount consumed by the The power generation efficiency calculated captive power generation from monitored data of the amount of fuel system $(FC_{PJ,p})$ [mass or input for power generation $(FC_{PI,p})$ and the weight/p]). amount of electricity generated $(EG_{PI,p})$ Net calorific value (NCV_{fuel} during the monitoring period *p* is applied. The [GJ/mass or weight]) and CO₂ measurement is conducted with the monitoring emission factor of the fuel equipment to which calibration certificate is $(EF_{fuel} [tCO_2/GJ])$ in order of issued by an entity accredited under preference: 1) values provided by the fuel national/international standards; $EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$ supplier; 2) measurement by the project Where: participants; NCV_{fuel} : Net calorific value of consumed 3) regional or national default fuel [GJ/mass or weight] values; 4) **IPCC** default values Note: provided in tables 1.2 and 1.4 In case the captive electricity generation of Ch.1 Vol.2 of 2006 IPCC system meets all of the following conditions, Guidelines on National GHG the value in the following table may be Inventories. Lower value is applied to EF_{elec} depending on the consumed applied. fuel type. [Captive electricity with diese] fuel] The system is non-renewable generation CDM approved small scale system methodology: AMS-I.A. Electricity generation capacity of the system is less than or equal to 15 MW

				[Captive electricity with natural
	fuel type	Diesel fuel	Natural gas	gas]
		0.0	0.46	2006 IPCC Guidelines on
	EF _{elec}	0.8 *1	0.46 *2	National GHG Inventories for
				the source of EF of natural gas.
*	1 The most rec	ent value at t	he time of	CDM Methodological tool
validation is applied.			"Determining the baseline	
*2 The value is calculated with the equation in			efficiency of thermal or electric	
the option a) above. The lower value of default			energy generation systems	
e	effective CO2 emission factor for natural gas			version02.0" for the default
((0.0543tCO ₂ /GJ), and the most efficient value			efficiency for off-grid power
0	of default efficiency for off-grid gas turbine			plants.
systems (42%) are applied.				

History of the document

Version	Date	Contents revised
01.0	21 August 2017	JC3, Annex 8
		Initial approval.