JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Introduction of High Efficiency Electrolyzer in Chlor-Alkali Production Plant

A.2. General description of project and applied technologies and/or measures

JANA produces chlorine and caustic soda, in which process large amount of electrical power is consumed. This project is intended to replace the existing elements of ion exchange membrane (IEM) brine electrolyzers to the latest model which will contribute to reducing energy consumption.

The bipolar electrolyzer consists of multiple elements, which have cathode and anode chambers, and IEMs are installed between each element. The latest high efficiency model is developed for optimum performance design by optimizing elements' inner structures and electrode shape, reducing resistance (lowering the voltage) of various components and preventing the mechanical damage for IEM thus achieving lower power consumption and contributing to energy saving.

A.3. Location of project, including coordinates

Country	Saudi Arabia
Region/State/Province etc.:	Eastern Province
City/Town/Community etc:	Jubail Industrial City-31961
Latitude, longitude	N 27° 00' 47.03"
	E 49° 32' 33.87"

A.4. Name of project participants

The Kingdom of Saudi Arabia	Jubail Chemical Industries Company (JANA)
Japan	Kanematsu Corporation

A.5. Duration

Starting date of project operation	25/01/2017	
Expected operational lifetime of project	5 years	

A.6. Contribution from developed countries

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the Financing Programme for JCM Model projects, which provided financial

support of less than half of the initial investment for the projects in order to acquire JCM credits. Further, implementation of the proposed project promotes technology transfer of low carbon technologies of Saudi Arabia.

In addition, OJT including operation and monitoring has been provided by Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	SA_AM001	
Version number	ver01.0	

B.2. Explanation of how the project meets eligibility criteria of the approve	ed methodology
---	----------------

ion-exchange mem electrolyzers in the n	nanufacturing process of	The project installs the bipolar type ion exchange membrane (IEM)
bipolar type.	e electrolyzer is the	brine electrolyzers system in chlorine and caustic soda production process in Jubail Industrial City.
Specific electricity consumption (SEC) for project electrolyzer <i>i</i> under the standard conditions, 32% NaOH and 90 degrees Celsius is less than threshold SEC values set in the table below under the standard conditions, 32% NaOH and 90 degrees Celsius;		The project SEC derived from the specification of the project electrolyzer is 1990 kWh(DC)/t-NaOH when CD is between 4.5 and 5.0, and is less than the threshold SEC value (2,088 kWh(DC)/t-NaOH).
CD (Current density) $[kA/m^2]$ $4.0 \le CD < 4.5$ $4.5 \le CD < 5.0$ $5.0 \le CD < 5.5$ $5.5 \le CD < 6.0$	Threshold SEC value of the electrolyzer [kWh(DC)/t-NaOH] 2,045 2,088 2,131 2,174	
	bipolar type. Specific electricity of project electrolyzer conditions, 32% N Celsius is less than t in the table below conditions, 32% N Celsius; CD (Current density) [kA/m ²] $4.0 \le CD < 4.5$ $4.5 \le CD < 5.0$ $5.0 \le CD < 5.5$	Specific electricity consumption (SEC) for project electrolyzer <i>i</i> under the standard conditions, 32% NaOH and 90 degrees Celsius is less than threshold SEC values set in the table below under the standard conditions, 32% NaOH and 90 degrees Celsius;CD (Current density) [kA/m²]Threshold SEC value of the electrolyzer [kWh(DC)/t-NaOH] $4.0 \le CD < 4.5$ 2,045 $4.5 \le CD < 5.0$ 2,088 $5.0 \le CD < 5.5$ 2,131 $5.5 \le CD < 6.0$ 2,174

|--|

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions		
Emission sources	GHG type	
Electricity consumption by reference electrolyzer	CO ₂	
Project emissions		
Emission sources	GHG type	
Electricity consumption by project electrolyzer	CO ₂	

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

C.3. Estimated emissions reductions in each year

Year	Estimated	Reference	Estimated	Project	Estimated	Emission
------	-----------	-----------	-----------	---------	-----------	----------

	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	65,486.9	62,143.4	3,073
2018	70,096.0	66,806.1	3,289
2019	70,096.0	66,806.1	3,289
2020	70,096.0	66,806.1	3,289
2021	70,096.0	66,806.1	3,289
2022	4,609.1	4,392.7	216
2023	-	-	-
2024	-	-	-
2025	-	-	-
2026	-	-	-
2027	-	-	-
2028	-	-	-
2029	-	-	-
2030	-	-	-
Total (tC	O ₂ e)		16,445

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for	NO	
the proposed project		

E. Local stakeholder consultation

- E.1. Solicitation of comments from local stakeholders
- Date of the local stakeholder meeting.

31/10/2017

• Place of the meeting.

Meeting room of JANA.

• Attendance.

Employees of JANA and government officials of Saudi Arabia were invited as important

stakeholders as the project site is in the factory area and there are no residents. As the result of invitation, employees of JANA attended.

• Comments from attendance

A brief introduction of the project was made and stakeholder comments were solicited. The attendees showed no negative comments to this project and had several questions about this project as described in the following section. There are no remaining questions to be replied.

Stakeholders	Comments received	Consideration of comments received
Employee o	How to account CO2 emission	CO2 emission reduction is calculated
JANA	reduction and issue the carbon credit?	by comparing the difference of
		electricity consumptions between the
		project electrolyzer and reference
		type electrolyzer. Electricity
		consumption of project electrolyze is
		monitored. The monitoring and
		calculation of CO2 emissions have to
		be in accordance with the approved
		JCM methodology. Based on the
		monitoring result, monitoring report
		is made and verified by a TPE.
		After completion of verification,
		project participants can request for
		issuance of credits to JC where the
		matter is discussed and decided.
Employee o	How is the carbon credit exchanged	JCM carbon credit cannot be
JANA	to money?	exchanged in the market.
Employee o	Are there any other projects, e.g. a	• Kanematsu implements energy
JANA	solar power project in this country	saving projects for corrugate cartons
	which possible to be implemented	process in Indonesia and for
	under the JCM?	refrigeration system in industrial cold
		storage in Thailand.
		• Solar power project s are one of
		possibilities to be implemented under
		the JCM.

E.2. Summary of comments received and their consideration

F. References N/A

Reference lists to support descriptions in the PDD, if any.

Annex

Revision history of PDD		
Version	Date	Contents revised
01.0	19/12/2017	First edition
02.0	5/3/2018	Second edition