JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Saudi Arabia		
Name of the methodology proponents	Thyssenkrupp Uhde Chlorine Engineers		
submitting this form	(Japan) Ltd.		
	Kanematsu Corporation		
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Introduction of High Efficiency Electrolyzer		
version number	in Chlor-Alkali Processing Plant, Version 01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	06/09/2017		

History of the proposed methodology

Version	Date	Contents revised
01.0	06/09/2017	First edition

A. Title of the methodology

Introduction of High Efficiency Electrolyzer in Chlor-Alkali Processing Plant, Version 01.0

B. Terms and definitions

Terms	Definitions	
Electrolyzer	An equipment used for the electrolysis of alkali chloride	
	solution, composed of an anode chamber, anode, cathode	
	chamber, cathode, and an ion exchange membrane.	
Ion-exchange membrane	Method for the electrolysis of alkali chloride solution	
method (IEM)	separates the cathode and anode chambers, in which a	
	cation exchange membrane possesses special properties	
	that permit only transmission of cations (positive ions) not	
	of anions (negative ions).	
Bipolar electrolyzer	Electrolyzer in which the elements are connected in series	
	and the power supply is connected only to the end part of	
	the electrolyzer.	

C. Summary of the methodology

Items		Summary	
GHG emission	reduction	Installing ion-exchange membrane electrolyzer, which reduces	
measures		electricity resistance of the electrolyzer unit and achieves	
		electricity consumption reduction in the chlor-alkali process.	
		This methodology applies to the project that aims for saving	
		energy by introducing high efficiency electrolyzer for the target	
		factory, commercial facilities etc. in Saudi Arabia.	
Calculation of	reference	Reference emissions are GHG emissions from using reference	
emissions		electrolyzer, calculated with power consumption of project	
		electrolyzer, ratio of the initial guarantee of specific electricity	
		consumptions of reference/project electrolyzers and CO ₂	
		emission factor for electricity consumed. The initial guarantee	
		of the electrolyzer has to be satisfied at the new plant, whose	

	membranes, electrodes and other elements are in the condition		
	that has not used and shows the best performance.		
Calculation of project	Project emissions are GHG emissions from using project		
emissions	electrolyzer, calculated with electricity consumption of project		
	electrolyzer and CO ₂ emission factor for electricity consumed.		
Monitoring parameters	Electricity consumption of project electrolyzer		
	• The amount of fuel consumed and/or the amount of		
	electricity generated by captive power, where applicable.		

D. Eligibility criteria					
This method	This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	Project electrolyzer employs an ion-exchange membrane technology in				
	elec	trolyzers in the manufacturing pro-	cess of chlor-alkali and the electrolyzer		
	is th	e bipolar type.			
Criterion 2	Spe	cific electricity consumption (SEC	C) for project electrolyzer i under the		
	stan	dard conditions, 32% NaOH and 9	0 degrees Celsius is less than threshold		
	SEC	C values set in the table below und	er the standard conditions, 32% NaOH		
	and	90 degrees Celsius;			
		CD (Current density) [kA/m ²]	Threshold SEC value of the		
			electrolyzer [kWh(DC)/t-NaOH]		
		$4.0 \le CD < 4.5$	2,045		
		$4.5 \le CD < 5.0$	2,088		
		$5.0 \le CD < 5.5$ 2,131			
		$5.5 \le CD < 6.0$ 2,174			
	$6.0 \le CD < 6.5$ 2,217				
	Project specific electricity consumption is derived from specifications based				
	on i	nitial performance test by manufact	urer.		

E. Emission Sources and GHG types

Reference emissions

Emission sources	GHG types				
Electricity consumption by reference electrolyzer	CO ₂				
Project emissions					
Emission sources	GHG types				
Electricity consumption by project electrolyzer	CO ₂				

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying electricity consumption of project electrolyzer and ratio of specific electricity consumption for reference/project electrolyzer, and CO₂ emission factor for consumed electricity. The specific electricity consumption of reference electrolyzer is conservatively set as a default value in the following manner to ensure net emission reductions.

All electrolyzers in the chlor-alkali process in Japan employ ion-exchange membrane technology, and the average of specific electricity consumptions of the electrolyzers is 2,379 kWh (DC)/ton-NaOH (Japan Soda Industry Association, 2014).

The range of averaged specific electricity consumptions of the Bipolar type electrolyzers in EU is from 2,191 kWh (DC)/t-NaOH to 2,236 kWh(DC)/t-NaOH based on the document "Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali, 2014" by assuming general AC/DC efficiency of 96% to 98%.

The operating SECs of the existing bipolar ion-exchange membrane plant in Saudi Arabia were collected and averaged within the range of current density taking the same current density ranges as those in the above mentioned document. Accordingly the averaged SEC is calculated as 2,210 kWh (DC)/t-NaOH.

As a result, it is considered that the electrolyzer at the exiting bipolar ion-exchange membrane plant in Saudi Arabia has comparable efficiency advantage as it has the efficiency level of almost equivalent to the performance of electrolyzers reported in the document published in EU. Hence it is determined to be the reference electrolyzer.

In order to calculate reference emissions, SECs of an initial performance test for the reference electrolyzer was collected in order to make it comparable to the SECs of project electrolyzer

which are also based on an initial performance test.

Considering the fact that the initial performance test is conducted based on production plan of chlor-alkali and it varies for each plant, as well as that SECs are positively correlated with current density, the reference SECs are set into five range of current densities. The specific electricity consumptions of the initial performance test value of the electrolyzert is determined as 2,045, 2,088, 2,131, 2,174 and 2,217 kWh (DC)/ton-NaOH corresponding to the range of current densities of 4.0, 4.5, 5.0, 5.5 and 6.0 kA/m² respectively.

F.2. Calculation of reference emissions

$RE_p = \sum_i EC_{RE,i,p} \times EF_{elec}$			
F	RE_p	:	Reference emissions during the period p [tCO ₂ /p]
E	EC _{RE, i, p}	:	Electricity consumption of the reference electrolyzer i during the period p [MWh/p]
E	EF_{elec}	:	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
The $EC_{RE,i,n}$	is to be c	calcu	lated by the following equation.
The $EC_{RE,i,p}$	is to be c	calcı	alated by the following equation. $EC_{RE,i,p} = EC_{Pj,i,p} \times \frac{SEC_{RE,i}}{SEC_{Pj,i}}$
E	$EC_{PJ,i,p}$:	$EC_{RE,i,p} = EC_{Pj,i,p} \times \frac{SEC_{RE,i}}{SEC_{Pj,i}}$ Electricity consumption of the project electrolyzer <i>i</i> during

G. Calculation of project emissions

$$PE_p = \sum_i EC_{PJ,i,p} \times EF_{elec}$$

 PE_p : Project emissions during the period p [tCO₂/p]

$EC_{PJ,i,p}$:	Electricity consumption of the project electrolyzer <i>i</i> during the
		period p [MWh/p]
EF_{elec}	:	CO2 emission factor for consumed electricity [tCO2/MWh]

H. Calculation of emissions reductions

$$ER_p = PE_p - RE_p$$

ER_p	:	Emission reduction during the period p [tCO ₂ /p]
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
PE_p	:	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Descriptio	Source	
$SEC_{RE,i,p}$	Specific electricity cons	Additional information	
	reference electrolyzer <i>i</i>	The default SEC values are	
	The default value is set	derived from the initial	
		performance test value of	
	CD (Current	Default value of	existing electrolyzer which
	density) [kA/m ²] of	SEC of the	is installed in the
	performance	electrolyzer	chlor-alkali processing plant
	guarantee by	[kWh(DC)/t-NaOH]	in Saudi Arabia.
	manufacturer of the		The survey should prove the
	project electolyzer	use of clear methodology.	
	$4.0 \le CD < 4.5$	The $SEC_{RE,i}$ should be	
	$4.5 \le CD < 5.0$	revised if necessary from	
	$5.0 \le CD < 5.5$	survey result which is	
	$5.5 \le CD < 6.0$	2,174	conducted by the Joint
	$6.0 \le CD < 6.5$	Committee or project	
	I	participants.	
$SEC_{PJ,i,p}$	Specific electricity cons	Specification of the project	
	electrolyzer <i>i</i> [kWh(DC	electrolyzer <i>i</i> prepared for	

		the performance test by manufacturer
EF _{elec}	CO ₂ emission factor of electricity consumed. When the project equipment consumes only grid electricity or captive electricity, the project participant applies the CO ₂ emission	[Grid electricity] The most recent value available at the time of validation is applied and
	factor respectively. When the project equipment may consume both grid electricity and captive electricity, the	fixed for the monitoring period thereafter. The data is sourced from the National
	project participant applies the CO ₂ emission factor with lower value.	Committee for the Clean Development Mechanism (Saudi Arabia DNA for
	[CO₂ emission factor]For grid electricity: The most recent value available from the source stated in this table at the time of validation	CDM), unless otherwise instructed by the Joint Committee.
	For captive electricity, it is determined based on the following options:	[Captive electricity] For the option a) Specification of the captive
	a) Calculated from its power generation efficiency (η_{elec} [%]) obtained from manufacturer's specification The power generation efficiency based on	power generation system provided by the manufacturer (η_{elec} [%]). CO ₂ emission factor of the fossil fuel type used in the
	lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied; $EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	captive power generation system (EF_{fuel} [tCO ₂ /GJ]) For the option b)
	b) Calculated from measured data	Generated and supplied electricity by the captive power generation system
	The power generation efficiency calculated from monitored data of the amount of fuel input for power generation $(FC_{PJ,p})$ and the amount of electricity generated $(EG_{PJ,p})$	$(EG_{PJ,p} [MWh/p]).$ Fuel amount consumed by the captive power generation system $(FC_{PJ,p} [mass or$
	during the monitoring period p is applied. The	weight/p]).

measurement is conducted with the monitoring	Net calorific value and
equipment to which calibration certificate is	(<i>NCV</i> _{fuel} [GJ/mass or
issued by an entity accredited under	weight]) CO ₂ emission
national/international standards;	factor of the fuel (EF_{fuel})
$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$	[tCO ₂ /GJ]) in order of preference:
Where:	
NCV _{fuel} : Net calorific value of consumed	1) values provided by the
fuel [GJ/mass or weight]	fuel supplier;
	2) measurement by the
Note:	project participants;
In case the captive electricity generation	3) regional or national
system meets all of the following conditions,	default values;
the value of " 0.8 " may be applied to EF_{elec} .	4) IPCC default values
• The system is non-renewable generation	provided in table 1.2 and 1.4
system	of Ch.1 Vol.2 of 2006 IPCC
• Electricity generation capacity of the	Guidelines on National
system is less than or equal to 15 MW	GHG Inventories. Lower
*The most recent value available from CDM	value is applied.
approved small scale methodology AMS-I.A	
at the time of validation is applied.	