JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Introduction of Gas Co-generation System and Absorption Chiller to Motor Parts Factory

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to reduce emissions of greenhouse gas (GHG) by introducing co-generation system (hereinafter referred to as CGS) and the absorption chiller in the motor parts factory of PT. DENSO Indonesia located in Bekasi, West Java Province.

Electricity generated by the CGS substitutes a part of grid electricity consumed in the project site. The absorption chiller utilizing heating energy generated by the CGS saves energy for cooling energy demand. Installation of the CGS and the absorption chiller leads to improvement of total energy efficiency and in turn GHG emission reductions.

The gas engine introduced in the project is manufactured by JENBACHER and its model number is "JMS612GS-N.L.". The absorption chiller introduced in the project is manufactured by EBARA and its model number is "RFHA066".

A.3. Location of project, including coordinates

Country	Republic of Indonesia	
Region/State/Province etc.:	West Java Province	
City/Town/Community etc:	Bekasi	
City/10wil/Community etc.	DCKasi	
Latituda lanaituda	(010152 0110 107004125 211E	
Latitude, longitude	6°19'52.8"S 107°04'25.3"E	

A.4. Name of project participants

The Republic of Indonesia	PT. DENSO Indonesia
Japan	DENSO CORPORATION

A.5. Duration

Starting date of project operation	01/10/2019
Expected operational lifetime of project	9 years

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan

(MOEJ) through the financing programme for JCM model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits. Furthermore, implementation of the proposed project promotes transfer of low carbon technologies in Indonesia. The proposed JCM project also provides local staff with a technical training for maintenance skill.

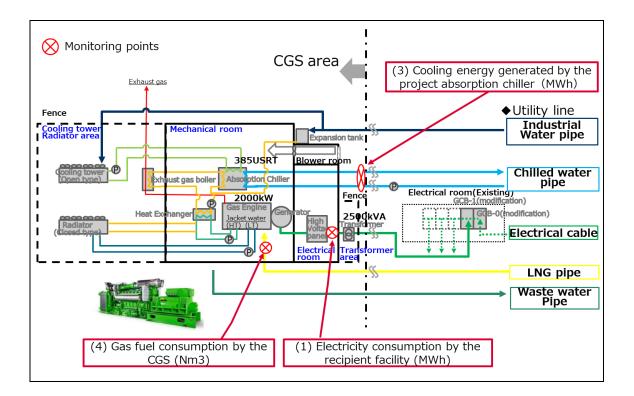
B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	ID_AM023
Version number	Ver1.0

Eligibility criteria	Descriptions specified in the methodology	Project information
Criterion 1	A CGS, whose electricity is	A gas engine CGS manufactured by
	generated by a gas engine(s), with	JENBACHER (model number is
	absorption chiller(s) utilizing waste	"JMS612GS-N.L.") and an absorption
	heat from CGS are installed and	chiller manufactured by EBARA (model
	supplies electricity and heating	number is "RFHA066") are installed to
	energy and cooling energy (e.g.	supply electricity and heating energy
	steam, hot water and chilled water) to	and cooling energy to recipient facilities.
	recipient facility(ies).	The project absorption chiller utilizes
		waste heat from the project CGS.
Criterion 2	Electricity and heating energy, each	Grid electricity and heating energy
	of which is generated in separate	generated by a boiler are supplied to and
	systems, is supplied to and consumed	consumed by recipient facilities before
	by recipient facility(ies) before the	installation of the project CGS.
	installation of a project CGS.	
Criterion 3	In the case of replacing the existing	The existing chiller is NOT replaced
	chiller with the project chiller, a plan	with the project chiller.
	for prevention of releasing	
	refrigerant used in the existing chiller	
	to the air (e.g. re-use of the	
	equipment) is prepared. Execution of	
	this plan is checked at the time of	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology


verification, in order to confirm that
refrigerant used for the existing one
replaced by the project is prevented
from being released to the air.
In the case that the existing chiller is
NOT replaced with the project
chiller, this criterion is not applied.

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions			
Emission sources	GHG type		
Electricity consumption in recipient facility(ies)	CO ₂		
Fossil fuel consumption for production of heating energy consumed in recipient facility(ies)	CO ₂		
Electricity consumption by reference chiller	CO ₂		
Project emissions			
Emission sources	GHG type		
Gas fuel consumption by CGS	CO ₂		
Electricity consumption by project chiller	CO ₂		
Gas fuel consumption by project chiller	CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

C.3. Estimated emissions reductions in each year

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	-	-	-
2018	-	-	-
2019	2,331.74	1,319.24	1,012
2020	9,326.94	5,276.96	4,049
2021	9,326.94	5,276.96	4,049
2022	9,326.94	5,276.96	4,049
2023	9,326.94	5,276.96	4,049
2024	9,326.94	5,276.96	4,049
2025	9,326.94	5,276.96	4,049
2026	9,326.94	5,276.96	4,049
2027	9,326.94	5,276.96	4,049
2028	6,995.21	3,957.72	3,037

2029			-
2030			-
Total (tCO ₂ e)		36,441	

Note:

The estimated emission reductions in each year are rounded down after the decimal point.

D. Environmental impact assessment			
Legal requirement of environmental impact assessment for	No		
the proposed project			

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

Local stakeholder consultation has been conducted online, on 13th October 2020.

The list of attendees to the meeting has been determined through the consultation with the JC secretariat of Indonesian side.

The overview and participants of the meeting are as follows.

Date: 13th October 2020

Place: web conference

Agenda

- 1. Opening remarks
- 2. Outline of PT. DENSO Indonesia
- 3. Summary of the project and technology introduced (including the video that shows the equipment installed for this project)
- 4. Questions and answers
- 5. Closing

Participants:

[Local stakeholders]

No.	Organization	Position
1	JCM Secretariat	Head of Secretariat
2	JCM Secretariat	Secretariat
3	JCM Secretariat	Secretariat

4	P.T. Yutaka Manufacturing Indonesia	Energy Auditor	
5	P.T. Yutaka Manufacturing Indonesia	Energy Auditor	

[Project participants]

PT. DENSO Indonesia

A summary of the comments received, and consideration of those comments are listed in Section E.2. below.

Stakeholders	Comments received		С	onsideration of comments received
Head	1.	Currently do you have	1.	We have already 3 dedicated
of Secretariat,		additional manpower for		manpower to fully operate CGS.
JCM Secretariat		operation of CGS?		We have already trained them as
	2.	Do you conduct special training		gas engine generator operators.
		for CGS operator?	3.	Training was conducted at
	3.	If training for CGS operator has		Certification Foundation - "Balai
		already been conducted, how		Sertifikasi" in Bandung, West
		and how long has it been		Java.
		conducted? And who was the		We have already jointed with Astra
		trainer?		Green Energy Award, and held the
	4.	Have you explained this		Co-Generation system explanation
		activity to Astra group?		at 2019, and got the 1st winner.
Energy Auditor,	1.	What is the working	1.	ABS chiller uses chemical liquid
Yutaka		mechanism of ABS Chiller?		Lithium bromate (this working
Manufacturing	2.	How hot is the water for Chiller		principal looks like that of
Indonesia		input?		refrigerant gas). The system works
				when pressure decreases and
				automatically the temperature also
				goes down and the liquid turns to
				gas. The function of hot water is to
				turn back the low temperature gas
				to liquid.
			2.	The temperature of the input hot
				water is between 80-90°C

E.2. Summary of comments received and their consideration

F. References					
N/A					
Reference lists to support descriptions in the PDD, if any.					

Annex	
N/A	

Revision history of PDD							
Version	Date	Contents revised					
1.0	04/02/2021	First Edition					