Annex 1: Ex ante estimation of the project net emissions

Title of the JCM project: Prey Lang Wildlife Sanctuary - Stung Treng REDD+ project

In this document, equation numberings correspond to those described in the applied methodology, i.e., JCM_KH_AM004 ver01.1.

I. <u>Selection of the Option</u>

Option 1 provided in the applied methodology, which uses the National FRL transition probabilities from forest to non-forest classes only, was selected for the establishment of the project reference level in JCM Project Design Document Form for REDD-plus (PDD) and therefore was used for *ex ante* estimation of the project net emissions.

II. <u>Ex ante carbon stock change in the project area in year y (ΔCS_{pjy})</u>

In *ex post* calculation, the actual areas converted from forest to non-forest, CA_{pj i y}, will be determined using Cambodia's official forest map. However, because Cambodia's official forest map is only created every two years and was not available for *ex ante* estimation, we used the result of own remote sensing analysis using Sentinel 2A imagery in *ex ante* calculation. This remote sensing analysis was performed mainly for the implementation of effective patrolling, and its result will not be used in *ex post* calculation. Visual delineation of land entities (digitization) is listed in Chapter 2.1 MONITORING CHANGES IN FOREST AREA under Step 5.2: analysis methods of the GOFC-GOLD Source book COP 22 version 1¹. This method was selected because (a) data already being collected for law enforcement monitoring of the forest area, (b) it is possible to complete the manual digitization in monthly intervals due to the relatively small size of the project area, (c) does not require advanced levels of technical expertise, and (d) the high degree of familiarity of the forest area by the digitizers. Note that the project reference level has been established and available in PDD.

Sentinel 2A imagery was downloaded from <u>http://glovis.usgs.gov</u> and used to detect and estimate deforestation in the project site. The Ministry of Environment's official forest cover map for 2016 was used as the base map, and non-forested areas in the map was excluded from the analysis. Every month where cloud cover was low enough for analysis, a set of two satellite images (Table A-1) were compared using ArcGIS 10.8. Visually detected areas of deforestation were manually digitized by drawing polygons using editor tool, image analysis tool, composite band tool and drawing tool in ArcGIS 10.8. Monthly, twenty point locations were opportunistically selected for field-checking by ranger teams. Additionally, polygons with unclear classification, (e.g. deforestation and older agricultural fields) were ground-truthed by project teams using GPS units and Drones (DJI Phantom and Mavic).

 $^{^1\} http://www.gofcgold.wur.nl/redd/sourcebook/GOFC-GOLD_Sourcebook.pdf$

	period					
ID	Satellite	Start date	End date			
1	Sentinel 2	01 Jan 2018	25 Feb 2018			
2	Sentinel 2	25 Feb 2018	22 December 2018			
3	Sentinel 2	22 December 2018	21 Jan 2019			
4	Sentinel 2	21 Jan 2019	15 Feb 2019			
5	Sentinel 2	15 Feb 2019	22 Mar 2019			
6	Sentinel 2	22 Mar 2019	16 Apr 2019			
7	Sentinel 2	16 Apr 2019	21 Oct 2019			
8	Sentinel 2	21 Oct 2019	02 Dec 2019			
9	Sentinel 2	02 Dec 2019	27 Dec 2019			
10	Sentinel 2	27 Dec 2019	19 Jan 2020			

Table A-1 Sets of remote sensing images used to detect areas of deforestation during each monitoring

The project was started in March 2018, and the remote sensing analysis was performed to the project area for 2018 and 2019. Table A-2 shows the deforestation areas estimated from the analysis, and these results were used as *ex ante* areas converted from forest to non-forest in the project area, $CA_{pj i y}$, in 2018 and 2019. From 2020 to 2024 and then from 2025 onwards, we applied a reduction of 10% and 20%, respectively, each year from the deforestation area in the previous year, based on expectation that deforestation will decrease as a result of project activities. The percentages were determined based on professional judgment. Table A- 3 shows the *ex ante* estimations of carbon stock change in the project area in year y, $\Delta CS_{pj y}$, which were calculated with $CA_{pj i y}$, emission factors in Table 2 in the applied methodology and Equation 11.

Estimation		Area converted from forest class i to non-forest in the project area,				
method		ha				
		Evergreen	Semi-evergreen	Deciduous	Bamboo	Forest
	Year	forest	forest	forest		regrowth
Remote	2018	43	185	3	2	4
sensing	2019	149	380	20	1	28
analysis						
10% reduction	2020	134	342	18	1	25
from the	2021	120	308	16	1	23
previous year	2022	108	277	14	1	21
	2023	98	249	13	1	19
	2024	88	225	12	1	17
20% reduction	2025	70	180	9	1	13

Table A- 2 Ex ante estimation of areas converted from forest i to non-forest, CApity

from	the	2026	56	144	7	0	11
previous y	ear	2027	45	115	6	0	9
		2028	36	92	5	0	7
		2029	29	74	4	0	5

Table A- 3 *Ex ante* carbon stock change in the project area in year y, ΔCS_{pjy}

Year	<i>Ex ante</i> estimation of ΔCS_{pjy} , tC
2018	29,243
2019	67,114
2020	60,402
2021	54,362
2022	48,926
2023	44,033
2024	39,630
2025	31,704
2026	25,363
2027	20,290
2028	16,232
2029	12,986
Total	450,285

III. <u>CO₂ emissions from fossil fuel combustion in year y ($E_{fuel y}$)</u>

The only planned activity which results in fossil fuel combustion is for patrolling and for community supports with motorbikes, and the *ex ante* $E_{\text{fuel y}}$ was calculated based on the actual fossil fuel use, which was recorded as the purchase receipts.

In 2018, 2019 and 2020, the project used 4,602, 5,846 and 6,957 liter of motor gasoline respectively, and these values were applied for the 1st, 2nd and 3rd year estimation. For the *ex ante* estimation from the 4th year onward, we used the amount of fuel consumption in the 3rd year. The amount in volume was conservatively converted to that in mass by applying 0.783 g/cm³, which is the highest density allowed under Japanese Industrial Standard².

For *ex ante* estimation, we assume that similar level of activities and the same quantity of fuel consumption continue for the entire monitoring period. $E_{\text{fuel y}}$ was calculated with the direct method and 2006 IPCC default numbers 0.0443 and 0.0693 for net calorific value (NCV) and CO₂ emission factor (EF_{fuel}) respectively (2006 IPCC Guidelines Volume 2, Table 1.2 of Chapter 1 and Table 3.2.1 of Chapter 3) by applying Equation 14. Table A- 4 shows the results.

² https://www.jisc.go.jp/app/jis/general/GnrJISUseWordSearchList?toGnrJISStandardDetailList

Year	FC _{fy} , kg	<i>Ex ante</i> estimation for $E_{fuel y}$, tCO ₂
2018	3,603	11.1
2019	4,577	14.1
2020	5,447	16.7
2021	5,447	16.7
2022	5,447	16.7
2023	5,447	16.7
2024	5,447	16.7
2025	5,447	16.7
2026	5,447	16.7
2027	5,447	16.7
2028	5,447	16.7
2029	5,447	16.7
Total	62,654	192.3

Table A- 4 Quantity of fuel type *f* consumed in year *y*, FC_{fy} , and *ex ante* estimation for CO₂ emissions from fossil fuel combustion in year *y*, $E_{fuel y}$

IV. <u>GHG emissions from fertilizer application within the activity area as a part of the project activities</u> in year y (E_{fertilizer y})

The project plans to utilize green manure in local villagers' farms to improve agricultural production, and candidate species for green manure are listed below:

- Canavalia ensiformes
- Crotalaria juncea L.
- Panicum purpurascens Mez.
- Brachiaria brizantha
- Eleusine coracana Gaern
- Cajanus cajan
- Stylosanthes guianensis

Based on the project management record, *Crotalaria juncea* L., which is a legume, was applied in 2 ha of cashew plantation and 0.2 ha of rice field in 2020 as a demonstration, but no green manure was utilized in 2018 and 2019. In all cases, *Crotalaria juncea* L. was harvested twice a year, making the annual harvested area double, i.e., 4 ha in cashew plantation and 0.4 ha in a rice field in 2020. This information was used for the 1st, 2nd and 3rd year estimation. For the *ex ante* estimation from the 4th year onward, we assume that beans would be used as N-fixing crop throughout the area under the project's support, though there would be some area where no green manure, in particular early stage of the project, or other types of green manure is utilized, or non-paddy area where green manure is utilized. We assume

that the area under the project's support will be increased 200 ha every 2 years until 600 ha and be all rice field. Same as for 2020, the areas were doubled to calculate the annual harvested areas.

We calculated 1) direct N₂O emissions as a result of nitrogen application within the project area and the activity area for the implementation of the project activities in year *y*, $E_{direct-N y}$, 2) indirect N₂O emissions as a result of nitrogen application within the project area and the activity area for implementation of the project activities in year *y*, $E_{indirect-N y}$, and 3) GHG emissions from fertilizer application within the project area and the activities in year *y*, $E_{indirect-N y}$, and 3) GHG emissions from fertilizer application within the project area and the activity area for implementation of the project activities in year *y*, $E_{indirect-N y}$, and 3) GHG emissions from fertilizer application within the project area and the activity area for implementation of the project activities in year *y*, $E_{fertilizer y}$ by applying the parameters described in Table A- 5, Equations 16, 17, 20, 21 and 24. The results are summarized in Table A- 6.

In addition to green manure, the project also plans to use organic fertilizer. According to the methodology, organic fertilizer which is made from organic materials sourced from inside the project area and the activity area are NOT accounted, and this is the case for the project. Therefore, green manure is the only source of N_2O emissions from fertilizer application.

Parameter	Value	Source
Harvested annual dry matter yield for N-	1.1579	FAOSTAT, Bean yield
fixing crop T, introduced during the		of Cambodia in 2019
implementation of the project activities in		
cropland type c in the activity area in year y ,		
Crop _{c T y} , t d.m./ha		
Total annual area harvested of N-fixing crop	In rice paddy, 0 ha in the	Project management
T, introduced during the implementation of	1 st and 2 nd year, 0.4 ha in	record
the project activities in cropland type c in the	the 3 rd year, 400 ha in 4 th	
activity area in year y, Area _{c T y} , ha	and 5^{th} year, 800 ha in 6^{th}	
	and 7 th year, and 1200 ha	
	in the following years.	
	In general (non paddy), 0	
	ha in the 1 st and 2 nd year,	
	4 ha in the 3^{rd} year, and 0	
	ha in the following years.	
Fraction of total area under N-fixing crop T	1 dimentionless	Interview for local
that is renewed annually, $Frac_{Renew T}$		agriculture expert
		(available in Project
		management record)
Ratio of above-ground residues to harvested	1.864 t d.m. (t d.m.) ⁻¹ (*)	$Crop_{c T y}$ and values for

Table A- 5 Parameters applied to calculate emissions as a result of fertilizer application

yield for N-fixing crop T , R_{AGT}		"Beans & pulses" in
		Table 11.2 of Ch. 11,
		Vol, 4 of 2006 IPCC
		Guidelines
N content of above-ground residues for N-	0.008 t N (t d.m.) ⁻¹	Value for "Beans &
fixing crop T , N _{AG T}		pulses" in Table 11.2 of
8 T , 18 T		Ch. 11, Vol, 4 of 2006
		IPCC Guidelines
Ratio of below-ground residues to harvested	0.544 t d.m. (t d.m.) ⁻¹	Crop _{c T y} and values for
yield for crop T , R_{BGT}	(**)	"Beans & pulses" in
		Table 11.2 of Ch. 11,
		Vol, 4 of 2006 IPCC
		Guidelines
N content of below-ground residues for crop	0.008 t N (t d.m.) ⁻¹	Value for "Beans &
T, N _{BG T}		pulses" in Table 11.2 of
		Ch. 11, Vol, 4 of 2006
		IPCC Guidelines
Global Warming Potential for N2O, GWPN2O	298 tCO ₂ tN ₂ O ⁻¹	Table 2.14 in Ch.2 of
		Working Group I
		contribution to the IPCC
		Forth Assessment
		Report
Fraction of N that area lost through leaching	0.3 dimensionless	Table 11.3 of Ch. 11,
and runoff, Frac _{leach}		Vol, 4 of 2006 IPCC
		Guidelines
Emission factor for N_2O emissions from N	0.0075 tN ₂ O-N (t	Table 11.3 of Ch. 11,
leaching and runoff, EF _{leach-N}	leaching and runoff) ⁻¹	Vol, 4 of 2006 IPCC
		Guidelines
Emission factor for N ₂ O emission from N	0.003 tN ₂ O-N (tN-	Table 11.1 of Ch. 11,
inputs for Rice paddy (flooded rice field),	input) ⁻¹	Vol, 4 of 2006 IPCC
EF _{direct-N (paddy)}		Guidelines
Fraction that volatilized as NH ₃ and NOx for	0.20 dimentionless	Table 11.3 of Ch. 11,
organic fertilizers, Fracon		Vol, 4 of 2006 IPCC
		Guidelines
Emission factor for N ₂ O emissions from	0.010 tN ₂ O-N (tNH ₃ -N	Table 11.3 of Ch. 11,
atmospheric deposition of N on soils and	and NO _X -N volatilized) ⁻¹	Vol, 4 of 2006 IPCC
water surfaces,		Guidelines
EF _{indirect-N}		

Fraction of N that is lost through leaching and	0.30 dimentionless	Table 11.3 of Ch. 11,
runoff, Frac _{leach}		Vol, 4 of 2006 IPCC
		Guidelines

(*) R_{AGT} was calculated as ratio of above-ground residues dry matter for crop T, AG_{DMT} , to harvested yield for crop T, $Crop_{cTy}$ by following the method described under equation 11.6 of Ch. 11, Vol. 4 of 2006 IPCC Guidelines. AG_{DMT} was calculated by applying the coefficients for "Beans & pulses", 1.13 and 0.85, in Table 11.2 of Ch. 11, Vol. 4 of 2006 IPCC Guidelines and $Crop_{cTy}$, 1.1579, in Table A-5 above. $R_{AGT} = AG_{DMT} / 1.1579$; $AG_{DMT} = 1.1579 * 1.13 + 0.85$.

(**) $R_{BG T}$ was calculated by following a method described under equation 11.6 of Ch. 11, Vol. 4 of 2006 IPCC Guidelines, i.e., multiplying R_{BG-BIO} , 0.19, in Table 11.2 of Ch. 11, Vol. 4 of 2006 IPCC Guidelines by the ratio of total above-ground biomass to $Crop_{c T y}$, 1.1579. $R_{BG T} = 0.19 * (AG_{DM T} + 1.1570)/(1.1579; AG_{DM T} = 1.1579 * 1.13 + 0.85.$

Year	E _{direct-N y} , tCO ₂ -eq	E _{indirect-N y} , tCO ₂ -eq	E _{liming y} , tCO ₂ -eq	E _{urea y} , tCO ₂ -eq	E _{fertilizer y} , tCO ₂ -eq
2018	0.0	0.0	0.0	0.0	0.0
2019	0.0	0.0	0.0	0.0	0.0
2020	0.4	0.1	0.0	0.0	0.5
2021	12.5	9.4	0.0	0.0	21.9
2022	12.5	9.4	0.0	0.0	21.9
2023	25.1	18.8	0.0	0.0	43.9
2024	25.1	18.8	0.0	0.0	43.9
2025	37.6	28.2	0.0	0.0	65.8
2026	37.6	28.2	0.0	0.0	65.8
2027	37.6	28.2	0.0	0.0	65.8
2028	37.6	28.2	0.0	0.0	65.8
2029	37.6	28.2	0.0	0.0	65.8
Total	263.7	197.5	0.0	0.0	461.2

Table A- 6 Emissions as a result of fertilizer application

V. Estimation of displaced emissions

Displaced emissions will be estimated as increases of emissions from reference emissions in the displacement belt. Please refer PDD for the reference emissions in the displacement belt. In *ex post* calculation, the actual areas converted from forest to non-forest in the displacement belt, $CA_{d pj i y}$, will be determined using Cambodia's official forest map. However, because Cambodia's official forest map is only created every two years and was not available for *ex ante* estimation, we used the result of own remote sensing analysis using Sentinel 2A imagery in *ex ante* calculation. As described above, this remote sensing analysis was performed mainly for the implementation of effective patrolling and its

result will not be used in ex post calculation.

As with the project area, the remote sensing analysis was performed on the displacement belt for 2018 and 2019. Table A- 7 shows the deforestation areas estimated from the analysis, and these results were used as *ex ante* areas converted from forest to non-forest in the displacement belt, $CA_{d pj i y}$, in 2018 and 2019. From 2020 to 2024 and then from 2025 onwards, we applied a 10% and 20% reduction each year from the deforestation area in the previous year. The *ex ante* estimations of carbon stock change in the displacement belt in year *y*, $\Delta CS_{d pj y}$ were calculated with $CA_{d pj i y}$, emission factors in Table 2 in the applied methodology and Equation 34. Table A- 8 shows the results.

Estimation		Area converted from forest class i to non-forest in the displacement					
method		belt, ha					
		Evergreen	Semi-evergreen	Deciduous	Bamboo	Forest	
	Year	forest	forest	forest		regrowth	
Remote	2018	62	318	54	0	28	
sensing	2019	287	710	71	3	60	
analysis							
10% reduction	2020	258	639	64	3	54	
from the	2021	232	575	58	2	49	
previous year	2022	209	517	52	2	44	
	2023	188	466	47	2	40	
	2024	169	419	42	2	36	
20% reduction	2025	135	335	34	1	29	
from the	2026	108	268	27	1	23	
previous year	2027	87	215	22	1	18	
	2028	69	172	17	1	15	
	2029	55	137	14	1	12	

Table A-7 Ex ante estimation of areas converted from forest i to non-forest in the displacement belt,

CA_d	рj	i	у	
--------	----	---	---	--

Ex ante project emissions from the displacement belt in year y, DP_y, were then calculated with Equation 29. DP_y was compared with reference emissions from the displacement belt in year _y, DR_y (Table F in PDD), and *ex ante* displaced emissions to the displacement belt in year y, DE_y, was estimated with Equation 27. Table A- 8 shows the results.

Table A- 8 Ex ante displaced emissions to the displacement belt

Year	$\Delta CS_{d pj y}, tC$	DP_y , tCO_2	DE_y , tCO_2
2018	52,394	192,111.7	56,919.8

2019	128,081	469,629.5	306,867.2
2020	115,273	422,666.5	265,298.2
2021	103,745	380,399.9	228,207.1
2022	93,371	342,359.9	195,136.5
2023	84,034	308,123.9	165,674.9
2024	75,630	277,311.5	139,452.2
2025	60,504	221,849.2	88,404.7
2026	48,403	177,479.4	48,283.6
2027	38,723	141,983.5	16,878.7
2028	30,978	113,586.8	0.0
2029	24,783	90,869.4	0.0
Total	855,919	3,138,371.2	1,511,122.8

VI. Ex ante estimation of the project net emissions in year y, PEy

Based on *ex ante* estimation of $\Delta CS_{pj y}$, $E_{fuel y}$, $E_{fertilizer y}$ and DE_y , project net emissions in year *y*, PE_y , was estimated by applying Equation 10. Table A- 9 summarizes the results.

Year	$\Delta CS_{pjy} * 44/12, tCO_2$	$E_{\text{fuel y}}, \text{tCO}_2$	E _{fertilizer y} , tCO ₂ -eq	DE_{y}, tCO_{2}	PE_{y}, tCO_{2}
2018	107,224	11.1	0.0	56,919.8	164,154.5
2019	246,083	14.1	0.0	306,867.2	552,964.1
2020	221,475	16.7	0.5	265,298.2	486,790.0
2021	199,327	16.7	21.9	228,207.1	427,572.9
2022	179,394	16.7	21.9	195,136.5	374,569.6
2023	161,455	16.7	43.9	165,674.9	327,190.4
2024	145,309	16.7	43.9	139,452.2	284,822.3
2025	116,248	16.7	65.8	88,404.7	204,734.8
2026	92,998	16.7	65.8	48,283.6	141,364.2
2027	74,398	16.7	65.8	16,878.7	91,359.7
2028	59,519	16.7	65.8	0.0	59,601.3
2029	47,615	16.7	65.8	0.0	47,697.6
Total	1,651,045	192.3	461.2	1,511,122.8	3,162,821.5

Table A- 9 Ex ante estimation of project net emissions in year y